Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD e VBA
PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO
E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser. Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 32,90
C# ::: Windows Forms ::: DataGridView

Como retornar a linha da célula selecionada em um DataGridView do C# Windows Forms

Quantidade de visualizações: 24232 vezes
Muitas vezes precisamos obter a linha atual de uma determinada célula selecionada no DataGridView. Isso pode ser feito por meio da propriedade CurrentRow. Esta propriedade retorna um objeto da classe DataGridViewRow, que representa uma linha no DataGridView. Podemos usar esta classe para obter o índice da linha que contém a célula selecionada, percorrer todas as células de uma determinada linha, etc.

Veja um trecho de código no qual usamos a propriedade CurrentRow para obter o DataGridViewRow representando a linha da célula selecionada:

private void button3_Click(object sender, EventArgs e){
  // vamos obter a linha da célula selecionada
  DataGridViewRow linhaAtual = dataGridView1.CurrentRow;

  // vamos exibir o índice da linha atual
  int indice = linhaAtual.Index;
  MessageBox.Show("O índice da linha atual é: " + indice);
}



Java ::: Dicas & Truques ::: Imagens e Processamento de Imagens

Como carregar uma imagem em um BufferedImage do Java usando o método read() da classe ImageIO

Quantidade de visualizações: 12565 vezes
O método read() da classe ImageIO possui várias assinaturas. Entre elas há uma que aceita um objeto File representando o caminho e nome da imagem a ser carregada. Este método retorna um BufferedImage e atira uma exceção IOException se a imagem não puder ser carregada.

O exemplo abaixo mostra como carregar uma imagem JPG em um BufferedImage usando ImageIO.read():

import java.awt.*;
import java.io.*;
import java.awt.image.*;
import java.awt.event.*;
import javax.swing.*;
import javax.imageio.*;

public class Estudos extends JFrame{
  private BufferedImage imagem;
  
  public Estudos() {
    super("Estudos Java");
    
    Container c = getContentPane();
    c.setLayout(new FlowLayout());
	
    JButton btn = new JButton("Carregar Imagem");
    btn.addActionListener(
      new ActionListener(){
        public void actionPerformed(ActionEvent e){
          imagem = null;
          
          try{
            imagem = ImageIO.read(
              new File("imagens/fundo.jpg"));
          }
          catch(IOException exc){
            JOptionPane.showMessageDialog(null, 
              "Erro ao carregar a imagem: " + 
              exc.getMessage());
          }

          if(imagem != null)
            JOptionPane.showMessageDialog(null, 
              "Imagem carregada com sucesso.");
        }
      }
    );

    c.add(btn);
    	
    setSize(400, 300);
    setVisible(true);
  }
  
  public static void main(String args[]){
    Estudos app = new Estudos();
    app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
  }
}



C++ ::: Dicas & Truques ::: Arrays e Matrix (Vetores e Matrizes)

Como somar os elementos de um vetor de inteiros em C++

Quantidade de visualizações: 17446 vezes
Esta dica mostra a você como usar um laço for do C++ para somar todos os valores dos elementos de um vetor de inteiros. Observe que aqui nós declaramos e inicializamos o vetor (array) em apenas uma instrução:

#include <iostream>

using namespace std;

int main(int argc, char *argv[])
{
  // declara e inicializa um array de
  // 5 inteiros
  int valores[] = {2, 7, 1, 5, 6};
  int soma = 0;

  // soma os valores dos elementos
  for(int i = 0; i < 5; i++){
    soma += valores[i];
    // o mesmo que
    // soma = soma + valores[i];
  }

  // exibe o resultado
  cout << "Soma: " << soma << endl;

  system("PAUSE"); // pausa o programa
  return EXIT_SUCCESS;
}

Ao executar este código C++ nós teremos o seguinte resultado:

Soma: 21


Python ::: Desafios e Lista de Exercícios Resolvidos ::: Fenômenos dos Transportes, Hidráulica e Drenagem

Exercício Resolvido de Python - Como calcular o Número de Reynolds em Python - Leite integral a 293 K, massa específica de 1030 kg/m3 e viscosidade de 2,12.10-3 N.s/m2 está escoando a uma razão

Quantidade de visualizações: 373 vezes
Pergunta/Tarefa:

O Número de Reynolds é uma quantidade adimensional usada na mecânica dos fluidos para prever padrões de fluxo em diferentes situações de escoamento de fluidos. É definido como a razão entre forças inerciais e forças viscosas dentro de um fluido.

1) Leite integral a 293 K, massa específica de 1030 kg/m3 e viscosidade de 2,12.10-3 N.s/m2 está escoando a uma razão de 0,605 kg/s em uma tubulação de 63,5 mm de diâmetro.

a) Calcule o número de Reynolds. O escoamento é laminar ou turbulento?
b) Calcule a vazão em m3/s para um número de Reynolds de 2100 e a velocidade em m/s.

Sua saída deverá ser parecida com:

Informe a Massa Específica do fluido (kg/m3): 1030
Informe a Viscosidade Dinâmica do fluido (N.s/m2): 2.12e-3
Informe a Vazão Mássica (kg/s): 0.605
Informe o Diâmetro da Tubulação (mm): 63.5

A área da tubulação é: 0.003166921744359361 m2
A vazão volumétrica do fluido é: 0.000587378640776699 m3/s
A velocidade de escoamento do fluido é: 0.18547305181218499 m/s
O Número de Reynolds é: 5722.106110271679

Informe o novo Número de Reynolds: 2100
A nova velocidade de escoamento do fluido é: 0.06806819050531304 m/s
A nova vazão volumétrica do fluido é: 0.0002155666326104713 m3/s
Resposta/Solução:

O primeiro passo para a resolução deste exercício é nos lembrarmos da Fórmula do Número de Reynolds:

\[R_e = \frac{\rho \cdot v \cdot D}{\mu} \] Onde:

[[rho]] é a massa específica do fluido medida em kg/m3;

v = velocidade média do fluido em m/s;

D = diâmetro para o fluxo do tubo em metros (m);

[[mu]] é a viscosidade dinâmica do fluido em N.s/m2.

Obs.: No código eu mostro como fazer as conversões de unidades necessárias.

Veja a resolução completa para o exercício em Python, comentada linha a linha:

# vamos importar a biblioteca Math
import math

# método principal
def main():
  # vamos ler a massa específica da água
  massa_especifica = float(input("Informe a Massa Específica (kg/m3): "))

  # vamos ler a viscosidade dinâmica do fluido
  viscosidade_dinamica = float(input("Informe a Viscosidade (N.s/m2): "))

  # vamos ler a vazão mássica
  vazao_massica = float(input("Informe a Vazão Mássica (kg/s): "))

  # vamos ler o diâmetro da tubulação
  diametro = float(input("Informe o Diâmetro da Tubulação (mm): "))

  # o primeiro passo é calcular a área da seção transversal da tubulação
  # a) convertemos milímetros para metros
  diametro = diametro / 1000.0
  # b) calculamos a área em metros quadrados
  area = (math.pi * math.pow(diametro, 2) / 4)  
  
  # vamos converter a vazão mássica em vazão volumétrica
  vazao = vazao_massica / massa_especifica

  # vamos obter a velocidade de escoamento do fluido
  velocidade = vazao / area

  # e finalmente calculamos o Número de Reynolds
  numero_reynolds = (massa_especifica * velocidade * diametro) / viscosidade_dinamica

  # mostramos os resultados
  print("\nA área da tubulação é: {0} m2".format(area))
  print("A vazão volumétrica do fluido é: {0} m3/s".format(vazao))
  print("A velocidade de escoamento do fluido é: {0} m/s".format(velocidade))
  print("O Número de Reynolds é: {0}".format(numero_reynolds))

  # vamos ler o novo Número de Reynolds
  novo_numero_reynolds = float(input("\nInforme o novo Número de Reynolds: "))

  # vamos calcular a velocidade para o novo Reynolds  
  nova_velocidade = ((viscosidade_dinamica * novo_numero_reynolds)
    / (massa_especifica * diametro))
  print("A nova velocidade de escoamento do fluido é: {0} m/s".format(nova_velocidade))

  # vamos calcular a nova vazão volumétrica
  nova_vazao = area * nova_velocidade
  print("A nova vazão volumétrica do fluido é: {0} m3/s".format(nova_vazao))

if __name__== "__main__":
  main()

O primeiro Número de Reynolds, ou seja, 5722.1061, caracteriza o escoamento como turbulento, pois é maior que 2400. Já o Número de Reynolds 2100 caracteriza o escoamento como escoamento de transição (saindo do escoamento laminar e indo para o escoamento turbulento), já que é maior que 2000 e menor que 2400.


Nossas 20 dicas & truques de programação mais populares

Você também poderá gostar das dicas e truques de programação abaixo

Nossas 20 dicas & truques de programação mais recentes

Últimos Projetos e Códigos Fonte Liberados Para Apoiadores do Site

Últimos Exercícios Resolvidos

E-Books em PDF

E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby


E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser. Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 32,90

Planilha Web - Planilhas e Calculadoras online para estudantes e profissionais de Engenharia Civil, Engenharia Elétrica e Engenharia Mecânica.


© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 51 usuários muito felizes estudando em nosso site.