Você está aqui: VisuAlg ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas |
Como calcular o coeficiente angular de uma reta em VisuAlg dados dois pontos no plano cartesianoQuantidade de visualizações: 571 vezes |
O Coeficiente Angular de uma reta é a variação, na vertical, ou seja, no eixo y, pela variação horizontal, no eixo x. Sim, isso mesmo. O coeficiente angular de uma reta tem tudo a ver com a derivada, que nada mais é que a taxa de variação de y em relação a x. Vamos começar analisando o seguinte gráfico, no qual temos dois pontos distintos no plano cartesiano: ![]() Veja que o segmento de reta AB passa pelos pontos A (x=3, y=6) e B (x=9, y=10). Dessa forma, a fórmula para obtenção do coeficiente angular m dessa reta é: \[\ \text{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tg \theta \] Note que __$\Delta y__$ e __$\Delta x__$ são as variações dos valores no eixo das abscissas e no eixo das ordenadas. No triângulo retângulo que desenhei acima, a variação __$\Delta y__$ se refere ao comprimento do cateto oposto e a variação __$\Delta y__$ se refere ao comprimento do cateto adjascente. Veja agora o trecho de código na linguagem VisuAlg que solicita as coordenadas x e y dos dois pontos, efetua o cálculo e mostra o coeficiente angular m da reta que passa pelos dois pontos: algoritmo "Calcular o coeficiente angular de uma reta em VisuAlg" var // coordenadas dos dois pontos x1, y1, x2, y2: real // guarda o coeficiente angular m: real inicio // x e y do primeiro ponto escreva("Coordenada x do primeiro ponto: ") leia(x1) escreva("Coordenada y do primeiro ponto: ") leia(y1) // x e y do segundo ponto escreva("Coordenada x do segundo ponto: ") Ao executar este código VisuAlg nós teremos o seguinte resultado: Coordenada x do primeiro ponto: 3 Coordenada y do primeiro ponto: 6 Coordenada x do segundo ponto: 9 Coordenada y do segundo ponto: 10 O coeficiente angular é: 0.6666666666666666 Veja agora como podemos calcular o coeficiente angular da reta que passa pelos dois pontos usando o Teorema de Pitágoras. Note que agora nós estamos tirando proveito da tangente do ângulo Theta (__$\theta__$), também chamado de ângulo Alfa ou Alpha (__$\alpha__$): algoritmo "Calcular o coeficiente angular de uma reta em VisuAlg" var // coordenadas dos dois pontos x1, y1, x2, y2: real // guarda os comprimentos dos catetos oposto e adjascente cateto_oposto, cateto_adjascente: real // guarda o ângulo tetha (em radianos) e a tangente tetha, tangente: real inicio // x e y do primeiro ponto escreva("Coordenada x do primeiro ponto: ") leia(x1) escreva("Coordenada y do primeiro ponto: ") leia(y1) // x e y do segundo ponto escreva("Coordenada x do segundo ponto: ") leia(x2) escreva("Coordenada y do segundo ponto: ") leia(y2) // vamos obter o comprimento do cateto oposto Ao executar este código você verá que o resultado é o mesmo. No entanto, fique atento às propriedades do coeficiente angular da reta: 1) O coeficiente angular é positivo quando a reta for crescente, ou seja, m > 0; 2) O coeficiente angular é negativo quando a reta for decrescente, ou seja, m < 0; 3) Se a reta estiver na horizontal, ou seja, paralela ao eixo x, seu coeficiente angular é zero (0). 4) Se a reta estiver na vertical, ou seja, paralela ao eixo y, o coeficiente angular não existe. |
![]() |
Desafios, Exercícios e Algoritmos Resolvidos de VisuAlg |
Veja mais Dicas e truques de VisuAlg |
Dicas e truques de outras linguagens |
E-Books em PDF |
||||
|
||||
|
||||
Linguagens Mais Populares |
||||
1º lugar: Java |