Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD e VBA
PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO

C++ ::: Desafios e Lista de Exercícios Resolvidos ::: Recursão (Recursividade)

Exercício Resolvido de C++ - Um método recursivo que calcula o número de Fibonacci para um dado índice

Quantidade de visualizações: 877 vezes
Pergunta/Tarefa:

Observe a série de números Fibonacci abaixo:

Série:  0  1  1  2  3  5  8  13  21  34  55  89 
Índice: 0  1  2  3  4  5  6   7   8   9  10  11 
Cada número da série é a soma dos dois números anteriores. A linha de baixo reflete o índice do número. Assim, quando falamos "O quinto número de Fibonacci", nós estamos nos referindo ao índice 4, ou seja, o valor 3.

Este algoritmo consiste em, dado um determinado índice, retornar o número de Fibonacci correspondente. Recursivamente, o cálculo pode ser feito da seguinte forma:

fib(0) = 0;
fib(1) = 1;
fib(indice) = fib(indice - 2) + fib(indice - 1); sendo o indice >= 2

Os casos nos quais os índices são 0 ou 1 são os casos bases (aqueles que indicam que a recursividade deve parar). Seu método deverá possuir a seguinte assinatura:

int fibonacci(int indice){
  // sua implementação aqui
}
Sua saída deverá ser parecida com:
Informe o índice: 6
O número de Fibonacci no índice informado é: 8

Resposta/Solução:

Veja a resolução comentada deste exercício usando C++:

#include <string>
#include <iostream>

using namespace std;

// assinatura da função recursiva
int fibonacci(int indice);

int main(int argc, char *argv[]){
  // variáveis usadas na resolução do problema
  int indice;
  
  // vamos solicitar o índice do número de Fibonacci
  cout << "Informe o índice: ";
  // lê o índice
  cin >> indice;
    
  // calcula o número de Fibonacci no índice informado
  cout << "O número de Fibonacci no índice informado é: " <<
    fibonacci(indice) << endl;
  
  system("PAUSE"); // pausa o programa
  return EXIT_SUCCESS; 
}

// função recursiva que o número de Fibonacci em um determinado índice
int fibonacci(int indice){
  if(indice == 0){ // caso base; interrompe a recursividade
    return 0;
  }
  else if(indice == 1){ // caso base; interrompe a recursividade
    return 1;
  }
  else{ // efetua uma nova chamada recursiva
    return fibonacci(indice - 1) + fibonacci(indice - 2);
  }
}



Java ::: Dicas & Truques ::: Timers

Java Swing Exemplo completo: Como usar um timer para atualizar a hora atual em uma JLabel

Quantidade de visualizações: 17461 vezes
Este exemplo mostra como criar uma janela JFrame contendo dois botões JButton, um label JLabel e um timer (java.awt.Timer). Quando o timer dispara, o texto da label é atualizado para refletir a hora atual.

Veja o resultado na imagem abaixo:



E aqui está o código Java Swing completo para o exemplo:

package arquivodecodigos;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.Calendar;
import java.text.DecimalFormat;
 
public class Estudos extends JFrame{
  JLabel hora;  
  Timer timer; 
  DecimalFormat formato;
 
  public Estudos() {
    super("Usando timers em Java");
     
    Container c = getContentPane();
    c.setLayout(new FlowLayout(FlowLayout.LEFT));
 
    formato = new DecimalFormat("00"); 
 
    // Cria o timer
    timer = new Timer(1000, new ActionListener(){
      @Override
      public void actionPerformed(ActionEvent e){
        atualizarHoras();
      }
    });
 
    // Cria um botão com o texto "Iniciar"
    JButton iniciar = new JButton("Iniciar");
    iniciar.addActionListener(
      new ActionListener(){
        @Override
        public void actionPerformed(ActionEvent e){
          timer.start(); // inicia o timer
        }
      }
    );    
 
    // Cria um botão com o texto "Parar"
    JButton parar = new JButton("Parar");
    parar.addActionListener(
      new ActionListener(){
        @Override
        public void actionPerformed(ActionEvent e){
          timer.stop(); // pára o timer
        }
      }
    );
     
    // JLabel que exibirá a hora atual
    hora = new JLabel("00:00:00");
 
    // Adiciona os botões à janela
    c.add(iniciar);
    c.add(parar);
 
    // adiciona o label à janela
    c.add(hora);  
 
    setSize(350, 250);
    setVisible(true);
  }
   
  private void atualizarHoras(){
    // Cria uma instância de Calendar
    Calendar agora = Calendar.getInstance();    
 
    // horas, minutos e segundos
    int horas = agora.get(Calendar.HOUR);  
    int minutos = agora.get(Calendar.MINUTE);
    int segundos = agora.get(Calendar.SECOND);
    hora.setText(formato.format(horas) + ":" + 
      formato.format(minutos) + ":" + 
      formato.format(segundos));
  }
 
  public static void main(String args[]){
    Estudos app = new Estudos();
    app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
  }
}



JavaScript ::: Dicas & Truques ::: Strings e Caracteres

Como testar se uma string começa com uma determinada substring em JavaScript usando a função startsWith()

Quantidade de visualizações: 2397 vezes
O método startsWith() da linguagem JavaScript foi adicionado ao objeto String na revisão ECMAScript 2015, ou ES6, também chamado de ECMAScript 6.

Este método é chamado diretamente em uma variável do tipo string e retorna true se a palavra, frase ou texto começar com uma substring específica e false em caso contrário.

Veja um exemplo no qual verificamos se uma frase começa com a palavra "JavaScript":

<script type="text/javascript">
  var frase = "JavaScript é uma das melhores linguagens";
  
  if(frase.startsWith("JavaScript")){
    document.writeln("A frase começa com a palavra JavaScript");  
  }
  else{
    document.writeln("A frase não começa com a palavra JavaScript");  
  }
</script>

Ao executarmos este código JavaScript nós teremos o seguinte resultado:

A frase começa com a palavra JavaScript

É importante ter em mente que a função startsWith() diferente letras maiúsculas de letras minúsculas.


C ::: C para Engenharia ::: Geometria Analítica e Álgebra Linear

Como calcular a norma ou módulo de vetores nos espaços R2 e R3 usando C - Geometria Analítica e Álgebra Linear usando C

Quantidade de visualizações: 4652 vezes
Em Geometria Analítica e Álgebra Linear, a magnitude, norma, comprimento, tamanho ou módulo (também chamado de intensidade na Física) de um vetor é o seu comprimento, que pode ser calculado por meio da distância de seu ponto final a partir da origem, no nosso caso (0,0).

Considere o seguinte vetor no plano, ou seja, no espaço bidimensional, ou R2:

\[\vec{v} = \left(7, 6\right)\]

Aqui este vetor se inicia na origem (0, 0) e vai até as coordenadas (x = 7) e (y = 6). Veja sua plotagem no plano 2D:



Note que na imagem já temos todas as informações que precisamos, ou seja, o tamanho desse vetor é 9 (arredondado) e ele faz um ângulo de 41º (graus) com o eixo x positivo. Em linguagem mais adequada da trigonometria, podemos dizer que a medida do cateto oposto é 6, a medida do cateto adjacente é 7 e a medida da hipotenusa (que já calculei para você) é 9.

Note que já mostrei também o ângulo theta (__$\theta__$) entre a hipotenusa e o cateto adjacente, o que nos dá a inclinação da reta representada pelos pontos (0, 0) e (7, 6).

Relembrando nossas aulas de trigonometria nos tempos do colegial, temos que o quadrado da hipotenusa é a soma dos quadrados dos catetos, ou seja, o Teorema de Pitágoras:

\[a^2 = b^2 + c^2\]

Como sabemos que a potenciação é o inverso da radiciação, podemos escrever essa fórmula da seguinte maneira:

\[a = \sqrt{b^2 + c^2}\]

Passando para os valores x e y que já temos:

\[a = \sqrt{7^2 + 6^2}\]

Podemos comprovar que o resultado é 9,21 (que arredondei para 9). Não se esqueça da notação de módulo ao apresentar o resultado final:

\[\left|\vec{v}\right| = \sqrt{7^2 + 6^2}\]

E aqui está o código C que nos permite informar os valores x e y do vetor e obter o seu comprimento, tamanho ou módulo:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
  
int main(int argc, char *argv[]){
  float x, y, norma;
  // vamos ler os valores x e y
  printf("Informe o valor de x: ");
  scanf("%f", &x);
  printf("Informe o valor de y: ");
  scanf("%f", &y);
  
  // vamos calcular a norma do vetor
  norma = sqrt(pow(x, 2) + pow(y, 2));
    
  // mostra o resultado
  printf("A norma do vetor é: %f", norma);
 
  printf("\n\n");
  system("PAUSE");
  return 0;
}

Ao executar este código C nós teremos o seguinte resultado:

Informe o valor de x: 7
Informe o valor de y: 6
A norma do vetor é: 9.219544457292887

Novamente note que arredondei o comprimento do vetor para melhor visualização no gráfico. Para calcular a norma de um vetor no espaço, ou seja, no R3, basta acrescentar o componente z no cálculo.


Nossas 20 dicas & truques de programação mais populares

Você também poderá gostar das dicas e truques de programação abaixo

Nossas 20 dicas & truques de programação mais recentes

Últimos Projetos e Códigos Fonte Liberados Para Apoiadores do Site

Últimos Exercícios Resolvidos

E-Books em PDF

E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby


E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser. Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 19,90


© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 92 usuários muito felizes estudando em nosso site.