Delphi ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas |
Como calcular o cateto adjascente dadas as medidas da hipotenusa e do cateto oposto em DelphiQuantidade de visualizações: 1794 vezes |
|
Nesta dica mostrarei como podemos tirar proveito do Teorema de Pitágoras para obter a medida do cateto adjascente quando temos as medidas da hipotenusa e do cateto oposto. Este teorema diz que "o quadrado da hipotenusa é igual à soma dos quadrados dos catetos", o que torna a nossa tarefa, na linguagem Delphi, muito fácil. Comece observando a imagem a seguir: ![]() Veja que, nessa imagem, eu já coloquei os comprimentos da hipotenusa, do cateto oposto e do cateto adjascente. Para facilitar a conferência dos cálculos, eu coloquei também os ângulos theta (que alguns livros chamam de alfa) e beta já devidamente calculados. A medida da hipotenusa é, sem arredondamentos, 36.056 metros. Então, sabendo que o quadrado da hipotenusa é igual à soma dos quadrados dos catetos (Teorema de Pitógoras): \[c^2 = a^2 + b^2\] Tudo que temos que fazer é mudar a fórmula para: \[b^2 = c^2 - a^2\] Veja que agora o quadrado do cateto adjascente é igual ao quadrado da hipotenusa menos o quadrado do cateto oposto. Não se esqueça de que a hipotenusa é o maior lado do triângulo retângulo. Veja agora como esse cálculo é feito em linguagem Delphi: ----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------
procedure TForm2.Button1Click(Sender: TObject);
var
a, b, c: Real;
begin
c := 36.056; // medida da hipotenusa
a := 20; // medida do cateto oposto
// agora vamos calcular a medida da cateto adjascente
b := sqrt(sqr(c) - sqr(a));
// e mostramos o resultado
Edit1.Text := 'A medida do cateto adjascente é: ' +
FloatToStr(b);
end;
Note que este cálculo foi feito a partir do evento Click de um botão Button1 e o resultado foi exibido na propriedade Text de uma caixa de texto Edit1. Ao executar este código Delphi nós teremos o seguinte resultado: A medida do cateto adjascente é: 30,0005855942847 Como podemos ver, o resultado retornado com o código Delphi confere com os valores da imagem apresentada. |
C++ ::: Dicas & Truques ::: MIDI Musical Instrument Digital Interface, Mapeamento e sequenciamento MIDI, Entrada e saída MIDI |
Como definir o tipo de instrumento (programa) em um evento MIDI e enviar a mensagem para a função midiOutShortMsg() da API Win32 do WindowsQuantidade de visualizações: 1164 vezes |
|
Vimos em dicas nessa seção como usar a função midiOutShortMsg() da API Win32 do Windows para tocar notas musicais no dispositivo de saída MIDI. No entanto, nos exemplos anteriores, a nota tocada foi no instrumento padrão, ou seja, Acoustic Grand Piano, e no canal 1. Nesta dica mostrarei como definir o instrumento e também falarei um pouco mais sobre como tocar as notas em canais diferentes. Vamos então, com muita atenção. Analisando a documentação MIDI, encontramos que uma mudança de programa (instrumento musical) no canal 1 é representada pelo código de status 192 (hexadecimal C0), seguido pelo código do instrumento a ser usado (um valor inteiro que vai de 0 a 127, e que deverá ser convertido em hexadecimal). Assim, é bom dar uma olhada nessa lista: Piano Timbres: 1 Acoustic Grand Piano 2 Bright Acoustic Piano 3 Electric Grand Piano 4 Honky-tonk Piano 5 Rhodes Piano 6 Chorused Piano 7 Harpsichord 8 Clavinet Chromatic Percussion: 9 Celesta 10 Glockenspiel 11 Music Box 12 Vibraphone 13 Marimba 14 Xylophone 15 Tubular Bells 16 Dulcimer Organ Timbres: 17 Hammond Organ 18 Percussive Organ 19 Rock Organ 20 Church Organ 21 Reed Organ 22 Accordion 23 Harmonica 24 Tango Accordion Guitar Timbres: 25 Acoustic Nylon Guitar 26 Acoustic Steel Guitar 27 Electric Jazz Guitar 28 Electric Clean Guitar 29 Electric Muted Guitar 30 Overdriven Guitar 31 Distortion Guitar 32 Guitar Harmonics Bass Timbres: 33 Acoustic Bass 34 Fingered Electric Bass 35 Plucked Electric Bass 36 Fretless Bass 37 Slap Bass 1 38 Slap Bass 2 39 Synth Bass 1 40 Synth Bass 2 String Timbres: 41 Violin 42 Viola 43 Cello 44 Contrabass 45 Tremolo Strings 46 Pizzicato Strings 47 Orchestral Harp 48 Timpani Ensemble Timbres: 49 String Ensemble 1 50 String Ensemble 2 51 Synth Strings 1 52 Synth Strings 2 53 Choir "Aah" 54 Choir "Ooh" 55 Synth Voice 56 Orchestral Hit Brass Timbres: 57 Trumpet 58 Trombone 59 Tuba 60 Muted Trumpet 61 French Horn 62 Brass Section 63 Synth Brass 1 64 Synth Brass 2 Reed Timbres: 65 Soprano Sax 66 Alto Sax 67 Tenor Sax 68 Baritone Sax 69 Oboe 70 English Horn 71 Bassoon 72 Clarinet Pipe Timbres: 73 Piccolo 74 Flute 75 Recorder 76 Pan Flute 77 Bottle Blow 78 Shakuhachi 79 Whistle 80 Ocarina Synth Lead: 81 Square Wave Lead 82 Sawtooth Wave Lead 83 Calliope Lead 84 Chiff Lead 85 Charang Lead 86 Voice Lead 87 Fifths Lead 88 Bass Lead Synth Pad: 89 New Age Pad 90 Warm Pad 91 Polysynth Pad 92 Choir Pad 93 Bowed Pad 94 Metallic Pad 95 Halo Pad 96 Sweep Pad Synth Effects: 97 Rain Effect 98 Soundtrack Effect 99 Crystal Effect 100 Atmosphere Effect 101 Brightness Effect 102 Goblins Effect 103 Echoes Effect 104 Sci-Fi Effect Ethnic Timbres: 105 Sitar 106 Banjo 107 Shamisen 108 Koto 109 Kalimba 110 Bagpipe 111 Fiddle 112 Shanai Sound Effects: 113 Tinkle Bell 114 Agogo 115 Steel Drums 116 Woodblock 117 Taiko Drum 118 Melodic Tom 119 Synth Drum 120 Reverse Cymbal Sound Effects: 121 Guitar Fret Noise 122 Breath Noise 123 Seashore 124 Bird Tweet 125 Telephone Ring 126 Helicopter 127 Applause 128 Gun Shot A especificação MIDI define que o canal 10 seja reservado para os kits de percussão. Os instrumentos abaixo possuem os números de notas a serem enviados neste canal. 35 Acoustic Bass Drum 36 Bass Drum 1 37 Side Stick 38 Acoustic Snare 39 Hand Clap 40 Electric Snare 41 Low Floor Tom 42 Closed High Hat 43 High Floor Tom 44 Pedal High Hat 45 Low Tom 46 Open High Hat 47 Low Mid Tom 48 High Mid Tom 49 Crash Cymbal 1 50 High Tom 51 Ride Cymbal 1 52 Chinese Cymbal 53 Ride Bell 54 Tambourine 55 Splash Cymbal 56 Cowbell 57 Crash Cymbal 2 58 Vibraslap 59 Ride Cymbal 2 60 High Bongo 61 Low Bongo 62 Mute High Conga 63 Open High Conga 64 Low Conga 65 High Timbale 66 Low Timbale 67 High Agogo 68 Low Agogo 69 Cabasa 70 Maracas 71 Short Whistle 72 Long Whistle 73 Short Guiro 74 Long Guiro 75 Claves 76 High Wood Block 77 Low Wood Block 78 Mute Cuica 79 Open Cuica 80 Mute Triangle 81 Open Triangle É uma lista bem longa e ficará a ser cargo estudá-la ou usá-la como referência. Meu interesse maior é o código C/C++. Assim, vamos ver logo como definir o instrumento no canal 1 como Overdriven Guitar. Este instrumento possui o código 30 mas, na programação, devemos diminuí-lo em 1, ficando 29, e, ao passarmos para hexadecimal teremos 1D. A mudança de programa no canal 1 é representada pelo código 192, o que em hexadecimal é C0. Pronto, agora basta construirmos o DWORD da forma que fizemos nas dicas anteriores e chamar a função midiOutShortMsg(). Veja: ----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------
#include <cstdlib>
#include <iostream>
#include <windows.h>
using namespace std;
int main(int argc, char *argv[]) {
unsigned int erro; // guarda o erro caso algo dê errado
HMIDIOUT saida; // handle para o dispositivo de saída MIDI.
// vamos abrir o dispositivo de saída MIDI
erro = midiOutOpen(&saida, MIDI_MAPPER, 0, 0, CALLBACK_NULL);
if (erro != MMSYSERR_NOERROR) {
printf("Não foi possível abrir o mapeador MIDI: %d\n", erro);
}
else {
printf("Mapeador MIDI aberto com sucesso\n");
}
// vamos definir o instrumento como Overdriven Guitar
// no canal 1
midiOutShortMsg(saida, 0x00001DC0);
// vamos tocar o dó central com velocidade 100
midiOutShortMsg(saida, 0x00643C90);
Sleep(1000); // a nota vai durar 1 segundo
// dispara a mensagem Note-off
midiOutShortMsg(saida, 0x00643C80);
// agora vamos fechar o dispositivo de saída MIDI
midiOutClose(saida);
system("PAUSE");
return EXIT_SUCCESS;
}
Execute esse código e ouça um nota dó sendo tocada na guitarra com uma linda distorção. Se você quiser tocar a nota nó no canal 2 ou canal 3, basta usar C1, C2, e assim por diante. Uma última observação é você ficar atento ao fato de que os códigos de Note-on e Note-off para o canal 1 é 90 e 80 (em hexadecimal). Se for no canal 2, os códigos correspondentes serão 91 e 81 (sempre em hexadecimal). |
C# ::: Dicas & Truques ::: Arrays e Matrix (Vetores e Matrizes) |
C# para iniciantes - Como criar e inicializar um vetor (array) de strings em C#Quantidade de visualizações: 34108 vezes |
|
Neste dica mostrarei como declarar e inicializar um array (um vetor) de strings na linguagem C#. Veja que se trata de um vetor de nomes de cidades. Depois de inicializar o array com quatro nomes de cidades nós usamos o índice 3 para exibir o nome da quarta cidade. Veja o código completo para o exemplo: ----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------
using System;
namespace Estudos{
class Program{
static void Main(string[] args) {
// cria e inicializa um array de strings
string[] cidades = {"Goiânia", "São Paulo",
"Rio de Janeiro", "Curitiba"};
// exibe o valor do quarto elemento
Console.WriteLine("A cidade escolhida foi: {0}", cidades[3]);
Console.WriteLine("\n\nPressione uma tecla para sair...");
Console.ReadKey();
}
}
}
Ao executar este código nós teremos o seguinte resultado: A cidade escolhida foi: Curitiba |
Ruby ::: Dicas & Truques ::: Rotinas de Conversão |
Como converter uma string em um valor inteiro válido em Ruby usando a função to_iQuantidade de visualizações: 8985 vezes |
|
Em algumas situações nós temos que efetuar cálculos matemáticos usando valores fornecidos como texto. Para isso nós precisamos converter esses valores que chegam como string em valores numéricos válidos. Em Ruby nós podemos converter uma string em um inteiro usando a função to_i. Veja um exemplo que mostra como ler a entrada do usuário em Ruby a partir do teclado e efetuar um cálculo matemático: ----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------
# Veja o uso do método to_i para converter um string
# em um valor inteiro válido
print "Informe o primeiro número: "
num1 = (gets.chomp).to_i
print "Informe o segundo número: "
num2 = (gets.chomp).to_i
# Exibe o resultado
puts "A soma dos valores é: #{num1 + num2}"
Ao executar este código Ruby nós teremos o seguinte resultado: Informe o primeiro número: 8 Informe o segundo número: 2 A soma dos valores é: 10 |
Você também poderá gostar das dicas e truques de programação abaixo |
|
Python - Python para iniciantes - Como inserir uma determinada quantidade de espaços à direita de uma string Android Java - Como usar o método startActivity() da classe Activity ou AppCompatActivity do Android para mudar de telas |
Nossas 20 dicas & truques de programação mais recentes |
Últimos Projetos e Códigos Fonte Liberados Para Apoiadores do Site |
|
Python - Como criar o jogo Pedra, Papel, Tesoura em Python - Jogo completo em Python com código comentado |
Últimos Exercícios Resolvidos |
E-Books em PDF |
||||
|
||||
|
||||
Linguagens Mais Populares |
||||
|
1º lugar: Java |








