Você está aqui: Python ::: Shapely ::: Passos Iniciais

O que é a biblioteca Shapely e como usá-la em seus programas Python

Quantidade de visualizações: 131 vezes
A biblioteca Shapely é essencial para quem desenvolve trabalhos relacionados à geografia e geometria. Ela nos permite trabalhar com os três principais tipos de objetos geométricos: ponto, linha e polígono. É claro que existem outros, mas esses são os principais.

Como testar se a Shapely já está instalada no meu sistema?

A forma mais rápida se verificar se você já tem a Shapely instalada como parte do seu Python é usando o código abaixo:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------
 
# vamos importar a biblioteca Shapely
import shapely
 
# função principal do programa
def main():
  # vamos retornar a versão da Shapely
  versao = shapely.__version__
 
  # e mostramos o resultado
  print("A versão da Shapely é: {0}".format(versao))
 
if __name__== "__main__":
  main()

Se você já tiver a Shapely, você terá um resultado parecido com:

A versão da Shapely é: 2.0.4

Como instalar a Shapely?

Se você executar o código acima e a biblioteca Shapely não fizer parte da sua instalação do Python ainda, o seguinte erro será exibido:

c:\estudos_python>python estudos.py
Traceback (most recent call last):
File "c:\estudos_python\estudos.py", line 2, in <module>
import shapely
ModuleNotFoundError: No module named 'shapely'

Para instalar a Shapely, basta abrir uma janela de terminal e disparar o seguinte comando:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

c:\estudos_python>pip install shapely

A biblioteca Shapely é instalada como parte do GeoPandas. Dessa forma, se você instalar o GeoPandas ou já o tiver instalado, pode ter certeza que a Shapely está instalada e pronta para uso.

Link para compartilhar na Internet ou com seus amigos:

Python ::: Python para Engenharia ::: Geometria Analítica e Álgebra Linear

Como calcular o determinante de uma matriz 3x3 usando a Método de Sarrus em Python - Python para Álgebra Linear

Quantidade de visualizações: 5140 vezes
Os estudos da Geometria Analítica e Álgebra Linear envolvem, em boa parte de seus cálculos, a magnitude de vetores, ou seja, o módulo, tamanho, comprimento ou intensidade dos vetores. E isso não é diferente em relação às matrizes.

Quando uma matriz é envolvida nos cálculos, com muita frequência precisamos obter o seu determinante, que nada mais é que um número real associado à todas as matrizes quadradas.

Nesta dica mostrarei como obter o determinante de uma matriz quadrada de ordem 3, ou seja, três linhas e três colunas, usando o Método de Sarrus (somente matrizes 3x3). Note que é possível obter o mesmo resultado com o Teorema de Laplace, que não está restrito às matrizes quadradas de ordem 3. Veja também que não considerei as propriedades do determinante, o que, em alguns casos, simplifica muito os cálculos.

Então, vamos supor a seguinte matriz 3x3:



O primeiro passo é copiarmos a primeira e a segunda colunas para o lado direito da matriz. Assim:



Agora dividimos a matriz em dois conjuntos: três linhas diagonais descendentes e três linhas diagonais ascendentes:



Agora é só efetuar cálculos. Multiplicamos e somamos os elementos de cada conjunto, subtraindo o segundo conjunto do primeiro. Veja:

(1 x 5 x 9 + 2 x 6 x 7 + 3 x 4 x 8) - (7 x 5 x 3 + 8 x 6 x 1 + 9 x 4 x 2) = 0

Como podemos ver, o determinante dessa matriz é 0.

E agora veja o código Python no qual declaramos e instanciamos uma matriz 3x3, em seguida, calculamos o seu determinante:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# importamos a bibliteca NumPy
import numpy as np

# função principal do programa
def main():
  # vamos criar uma matriz 3x3
  m = np.array([(1, 2, 3), (2, 5, 2), (1, 3, 1)])
  
  # calcula o determinante usando a Regra de Sarrus
  det = ((m[0][0] * m[1][1] * m[2][2]) + (m[0][1]  
    * m[1][2] * m[2][0]) + (m[0][2] * m[1][0] * m[2][1])) - ((m[2][0] 
    * m[1][1] * m[0][2]) + (m[2][1]  * m[1][2] * m[0][0]) + (m[2][2] 
    * m[1][0] * m[0][1]))
    
  # mostramos o resultado
  print("O determinante da matriz é: %f" % det)
  
if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

O determinante da matriz é: 2.0

É possível também obter o determinante de uma matriz (não restrita à dimensão 3x3) usando o método linalg.det() da biblioteca NumPy do Python. Veja o código a seguir:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# importamos a bibliteca NumPy
import numpy as np

# função principal do programa
def main():
  # vamos criar uma matriz 3x3
  m = np.array([(1, 2, 3), (2, 5, 2), (1, 3, 1)])
  
  # calcula o determinante usando apenas NumPy
  det = np.linalg.det(m)
    
  # mostramos o resultado
  print("O determinante da matriz é: %f" % det)
  
if __name__== "__main__":
  main()

Veja que usei a mesma matriz e, usando apenas o método linalg.det() nós obtemos o mesmo resultado.


Python ::: Dicas & Truques ::: Lista (List)

Como criar uma lista Python vazia e adicionar itens a ela usando o laço for..in

Quantidade de visualizações: 11821 vezes
Nesta dica mostrarei como é possível usar o operador de vetor "[]" para criar um objeto List vazio na linguagem Python. Em seguida usaremos o laço for..in para adicionar 10 elementos a esta lista.

Veja o código completo para o exemplo:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

"""
  Este exemplo mostra como criar uma list
  vazia e inicializá-la usando o laço for.
"""

def main():
  # cria uma lista vazia
  valores = []
 
  # adiciona valores a ela
  for num in range(1, 11):
    valores += [(num * 2)]
 
  # exibe os valores da lista
  for num in valores:
    print(num)

if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

2
4
6
8
10
12
14
16
18
20


Python ::: Python para Engenharia ::: Cálculo Diferencial e Integral

Como calcular o limite de uma função usando Python e a biblioteca Sympy - Python para Engenharia

Quantidade de visualizações: 4281 vezes
Como calcular o limite de uma função usando Python e a biblioteca Sympy

Citando a Wikipédia: Na matemática, o limite de uma função é um conceito fundamental em cálculo e análise sobre o comportamento desta função quando próxima a um valor particular de sua variável independente. Informalmente, diz-se que __$\text{L}__$ é o limite da função __$\text{f(x)}__$ quando __$\text{x}__$ tende a __$\text{p}__$, escreve-se

\[ \lim_{x \to p} f(x) = L \]

quando __$\text{f(x)}__$ está arbitrariamente próximo de __$\text{L}__$ para todo __$\text{x}__$ suficientemente próximo de __$\text{p}__$. O conceito de limite pode ser estendido para funções de varias variáveis.

A biblioteca SymPy da linguagem Python facilita muito o trabalho de se calcular limites. É claro que é sempre uma boa idéia saber calcular o limite de uma função "na mão" mesmo, até para sabermos se nosso código Python está correto. No entanto, em algumas situações, lançar mão da função limit() da SymPy nos poupará um tempo incrível.

Dessa forma, a sintáxe para o cálculo do limite na SymPy segue o padrão limit(função, variável, ponto). Então, se quisermos calcular o limite de f(x) com x tendendo a 0, só precisamos fazer limit(f, x, 0).

Vamos colocar esse conhecimento em prática então? Veja o seguinte limite:

\[ \lim_{x \to 1} 5x^2 + 2x \]

Agora observe o código Python completo que calcula e retorna o limite desta função:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# vamos importar a biblioteca SymPy
from sympy import * 

def main():
  # vamos definir o símbolo x
  x = symbols("x")
  # definimos a função
  f = (5 * x ** 2) + (2 * x) 
  # finalmente calculamos o limite
  limite = limit(f, x, 1)
  # e mostramos o resultado
  print("O limite da função é: %f." % limite)

if __name__== "__main__":
  main()

Ao executar este código nós teremos o seguinte resultado:

O limite da função é: 7.000000.

Logo, o limite da função no ponto __$\text{x}__$ = 1 vale 7, em outras palavras, 7 é o valor que __$f(5x^2 + 2x)__$ deveria ter em 1 para ser contínua nesse ponto.

Vamos ver mais um exemplo? Observe o seguinte limite:

\[ \lim_{x \to 1} \left(\frac{x^2 - 1}{x - 1}\right) \]

Aqui temos um situação interessante. Note que temos que fazer uma manipulação algébrica na expressão, fatorando os termos. Porém, mesmo em situações assim o método limit() da Sympy consegue interpretar a expressão simbólica corretamente e nos devolver o limite esperado. Veja o código Python completo:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# vamos importar a biblioteca SymPy
from sympy import * 

def main():
  # vamos definir o símbolo x
  x = symbols("x")
  # definimos a função
  f = (x ** 2 - 1) / (x - 1) 
  # finalmente calculamos o limite
  limite = limit(f, x, 1)
  # e mostramos o resultado
  print("O limite da função é: %f." % limite)

if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

O limite da função é: 2.000000.


Desafios, Exercícios e Algoritmos Resolvidos de Python

Veja mais Dicas e truques de Python

Dicas e truques de outras linguagens

Códigos Fonte

Programa de Gestão Financeira Controle de Contas a Pagar e a Receber com Cadastro de Clientes e FornecedoresSoftware de Gestão Financeira com código fonte em PHP, MySQL, Bootstrap, jQuery - Inclui cadastro de clientes, fornecedores e ticket de atendimento
Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais
Controle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidadesControle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidades
Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 51 usuários muito felizes estudando em nosso site.