![]() |
|
||||
![]() Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais |
Você está aqui: Python ::: Python para Engenharia ::: Engenharia Civil - Cálculo Estrutural |
||||
Como calcular a Força Normal Adimensional ou Força Normal Reduzida de um pilar em Python - Python para Estruturas de Concreto ArmadoQuantidade de visualizações: 301 vezes |
||||
![]() A Força Normal Adimensional de um pilar, também chamada de Força Normal Reduzida, é representada pela letra grega ν (ni) e nos dá uma idéia da magnitude da força normal que está sendo aplicada na seção transversal de um pilar. A fórmula para o cálculo da Força Normal Adimensional pode ser representada da seguinte forma: \[\nu = \frac{N_\text{sd}}{A_\text{c} \cdot \frac{f_\text{ck}}{\gamma _\text{c}}} \] Onde: ν é a Força Normal Adimensional sem unidade; Nd é a força normal de projeto, em kN. fck é a resistência característica do concreto em kN/cm2. Para converter de Mpa para kN/cm2 nós só precisamos dividir por 10. γc é o fator de ponderação do concreto e, em geral, possui o valor 1,4. Ao dividirmos o fck pelo γc nós chegamos ao fcd, que é resistência de cálculo do concreto. Note que o valor encontrado para a força normal adimensional ν (ni) é o valor que, junto com o μ (mi), forma a dupla de fatores para o ábaco de VENTURINI que nos retornará o valor de ω (ômega) que nos ajudará a calcular a área de aço (As) do pilar. Há duas considerações importantes em relação à Força Normal Adimensional ν de um pilar: a) Se ν < 0,30 -> pode ser adequado reduzir a seção transversal do pilar. b) Se ν > 1,30 -> pode ser conveniente aumentar a seção transversal do pilar. Agora vamos ver o código Python? Note que pediremos para o usuário informar as dimensões do pilar nas direções x e y em centímetros, a carga total no pilar em kN e o fck do concreto em Mpa e retornaremos o valor da força normal adimensional:
Ao executar este código Python nós teremos o seguinte resultado: Informe a dimensão do pilar na direção x (em cm): 40 Informe a dimensão do pilar na direção y (em cm): 19 Informe a carga total no pilar (em kN): 841.35 Informe o FCK do concreto (em MPa): 30 A Força Normal Adimensional do pilar é: 0.72 |
||||
![]() |
||||
Python ::: Dicas & Truques ::: Arrays e Matrix (Vetores e Matrizes) |
||||
Como embaralhar os elementos de um array em Python usando random.shuffle()Quantidade de visualizações: 1159 vezes |
||||
Nesta dica mostrarei como podemos embaralhar a ordem dos elementos de uma lista do Python. Para isso usaremos o método shuffle() do módulo random. Este método muda a ordem dos elementos no vetor original. Veja o código completo para o exemplo:
Ao executar este código Python nós teremos o seguinte resultado: Ordem original: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] Após o embaralhamento: [3, 10, 6, 8, 9, 5, 7, 4, 1, 2] | ||||
Python ::: Dicas & Truques ::: Matemática e Estatística |
||||
Como resolver uma equação do segundo grau em Python - Como calcular Bhaskara em PythonQuantidade de visualizações: 2398 vezes |
||||
Como resolver uma equação do 2º grau usando Python Nesta dica mostrarei como encontrar as raízes de uma equação quadrática, ou seja, uma equação do 2º usando a linguagem Python. Definimos como equação do 2º grau ou equações quadráticas qualquer equação do tipo ax² + bx + c = 0 em que a, b e c são números reais e a ≠ 0. Ela recebe esse nome porque, no primeiro membro da igualdade, há um polinômio de grau dois com uma única incógnita. Note que, dos coeficientes a, b e c, somente o a é diferente de zero, pois, caso ele fosse igual a zero, o termo ax² seria igual a zero, logo a equação se tornaria uma equação do primeiro grau: bx + c = 0. Independentemente da ordem da equação, o coeficiente a sempre acompanha o termo x², o coeficiente b sempre acompanha o termo x, e o coeficiente c é sempre o termo independente. Como resolver uma equação do 2º grau Conhecemos como soluções ou raízes da equação ax² + bx + c = 0 os valores de x que fazem com que essa equação seja verdadeira. Uma equação do 2º grau pode ter no máximo dois números reais que sejam raízes dela. Para resolver equações do 2º grau completas, existem dois métodos mais comuns: a) Fórmula de Bhaskara; b) Soma e produto. O primeiro método é bastante mecânico, o que faz com que muitos o prefiram. Já para utilizar o segundo, é necessário o conhecimento de múltiplos e divisores. Além disso, quando as soluções da equação são números quebrados, soma e produto não é uma alternativa boa. Como resolver uma equação do 2º grau usando Bhaskara Como nosso código Python vai resolver a equação quadrática usando a Fórmula de Bhaskara, o primeiro passo é encontrar o determinante. Veja: \[\Delta =b^2-4ac\] Nem sempre a equação possui solução real. O valor do determinante é que nos indica isso, existindo três possibilidades: a) Se determinante > 0, então a equação possui duas soluções reais. b) Se determinante = 0, então a equação possui uma única solução real. c) Se determinante < 0, então a equação não possui solução real. Encontrado o determinante, só precisamos substituir os valores, incluindo o determinante, na Fórmula de Bhaskara: \[x = \dfrac{- b\pm\sqrt{b^2- 4ac}}{2a}\] Vamos agora ao código Python. Nossa aplicação vai pedir para o usuário informar os valores dos três coeficientes a, b e c e, em seguida, vai apresentar as raizes da equação:
Ao executar este código Python nós teremos o seguinte resultado: Valor do coeficiente a: 1 Valor do coeficiente b: 2 Valor do coeficiente c: -3 Existem duas raizes: x1 = 1.0 e x2 = -3.0 | ||||
Python ::: Dicas & Truques ::: Programação Orientada a Objetos |
||||
Programação orientada a objetos em Python: Classes, objetos, métodos e variáveis de instância - AtualizadoQuantidade de visualizações: 13979 vezes |
||||
A melhor forma de entender a programação orientada a objetos (OOP) é começar com uma analogia simples. Suponha que você queira dirigir um carro e fazê-lo ir mais rápido pressionado o acelerador. O que deve acontecer antes que você seja capaz de fazer isso? Bem, antes que você possa dirigir um carro, alguém tem que projetá-lo. Um carro geralmente começa com desenhos feitos pelos engenheiros responsáveis por tal tarefa, tal qual a planta de uma casa. Tais desenhos incluem o projeto de um acelerador que possibilita ao carro ir mais rápido. O pedal do acelerador "oculta" os mecanismos complexos responsáveis por fazer o carro ir mais rápido, da mesma forma que o pedal de freio "oculta" os mecanismos que fazem o carro ir mais devagar e o volante "oculta" os mecanismos que fazem com que o carro possa virar para a direita ou esquerda. Isso permite que pessoas com pequeno ou nenhum conhecimento de motores possam facilmente dirigir um carro. Infelizmente, não é possível dirigir o projeto de um carro. Antes que possamos dirigí-lo, o carro deve ser construído a partir do projeto que o descreve. Um carro já finalizado tem um pedal de aceleração de verdade, que faz com que o carro vá mais rápido. Ainda assim, é preciso que o motorista pressione o pedal. O carro não acelerará por conta própria. Agora vamos usar nosso exemplo do carro para introduzir alguns conceitos de programação importantes à programação orientada a objetos. A execução de uma determinada tarefa em um programa exige um método. O método descreve os mecanismos que, na verdade, executam a tarefa. O método oculta tais mecanismos do usuário, da mesma forma que o pedal de aceleração de um carro oculta do motorista os mecanismos complexos que fazem com que um carro vá mais rápido. Em Python, começamos criando uma unidade de programa chamada classe para abrigar um método, da mesma forma que o projeto de um carro abriga o design do pedal de acelerador. Em uma classe fornecemos um ou mais métodos que são projetados para executar as tarefas da classe. Por exemplo, a classe que representa uma conta bancária poderia conter muitos métodos, incluindo um método para depositar dinheiro na conta, outro para retirar dinheiro, um terceiro para verificar o saldo, e assim por diante. Da mesma forma que não podemos dirigir o projeto de um carro, nós não podemos "dirigir" uma classe. Da mesma forma que alguém teve que construir um carro a partir de seu projeto antes que pudessémos dirigí-lo, devemos construir um objeto de uma classe antes de conseguirmos executar as tarefas descritas nela. Quando dirigimos um carro, o pressionamento do acelerador envia uma mensagem ao carro informando-o da tarefa a ser executada (neste caso informando-o de que queremos ir mais rápido). Da mesma forma, enviamos mensagens aos objetos de uma classe. Cada mensagem é uma chamada de método e informa ao objeto qual ou quais tarefas devem ser executadas. Até aqui nós usamos a analogia do carro para introduzir classes, objetos e métodos. Já é hora de saber que um carro possui atributos (propriedades) tais como cor, o número de portas, a quantidade de gasolina em seu tanque, a velocidade atual, etc. Tais atributos são representados como parte do projeto do carro. Quando o estamos dirigindo, estes atributos estão sempre associados ao carro que estamos usando, e cada carro construído a partir do projeto sofrerá variações nos valores destes atributos em um determinado momento. Da mesma forma, um objeto tem atributos associados a ele quando o usamos em um programa. Estes atributos são definidos na classe a partir da qual o objeto é instanciado (criado) e são chamados de variáveis de instância da classe. Veremos agora como definir uma classe em Python e usar um objeto desta classe em um programa. Veja o trecho de código abaixo:
Em mais dicas dessa seção você aprenderá mais sobre a programação orientada a objeto em Python. | ||||
Desafios, Exercícios e Algoritmos Resolvidos de Python |
Veja mais Dicas e truques de Python |
Dicas e truques de outras linguagens |
E-Books em PDF |
||||
|
||||
|
||||
Linguagens Mais Populares |
||||
1º lugar: Java |