Você está aqui: Python ::: Python para Engenharia ::: Engenharia Civil - Cálculo Estrutural |
Como calcular o Momento Fletor Mínimo e a Excentricidade Mínima de 1ª Ordem de um pilar em Python - Python para Engenharia Civil e Cálculo EstruturalQuantidade de visualizações: 252 vezes |
![]() O cálculo e dimensionamento de pilares, sejam pilares de canto, extremidade ou intermediários, sempre seguem alguns passos cujas ordens são muito importantes, pois os dados de entrada de um passo podem vir de um ou mais passos anteriores. Em dicas anteriores do uso da linguagem Python no cálculo de pilares eu mostrei como calcular os esforços solicitantes majorados em pilares e também como calcular o índice de esbeltez de um pilar nas direções x e y. Nesta dica mostrarei como calcular o Momento Fletor Mínimo e a Excentricidade Mínima de 1ª Ordem de um pilar. Estes dados são muito importantes para a aplicação das fórmulas que embasam a área de aço a ser usada no pilar. Note que a Excentricidade Mínima de 1ª Ordem pode ser desprezada no caso de pilares intermediários (também chamados pilares de centro). O Momento Fletor Mínimo é o momento mínimo que deve ser considerado, mesmo em pilares nos quais a carga está centrada, e é calculado por meio da seguinte fórmula: \[M_\text{1d,min} = Nd \cdot (1,5 + (0,03 \cdot h) \] Onde: M1d,min é o momento fletor mínimo na direção x ou y em kN.cm. Nd são os esforços solicitantes majorados em kN. h é a dimensão do pilar na direção considerada (x ou y) em cm. A Excentricidade Mínima de 1ª Ordem do pilar pode ser calculada por meio da fórmula: \[e_\text{1,min} = \frac{M_\text{1d,min}}{Nd} \] Onde: e1,min é excentricidade mínima de 1ª ordem na direção escolhida. Nd são os esforços solicitantes majorados em kN. Note que, a exemplo do momento fletor mínimo, a excentricidade mínima de 1ª ordem também deve ser calculada nas direções x e y do pilar. Vamos ao código Python agora? Veja que o código pede para o usuário informar as dimensões do pilar nas direções x e y em centímetros, a carga total que chega ao pilar em kN e mostra o momento fletor mínimo e a excentricidade mínima de 1ª ordem no pilar, tanto na direção x quanto na direção y: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- # método principal def main(): # vamos pedir as dimensões do pilar hx = float(input("Informe a dimensão do pilar na direção x (em cm): ")) hy = float(input("Informe a dimensão do pilar na direção y (em cm): ")) # vamos pedir a carga total no pilar em kN Nk = float(input("Informe a carga total no pilar (em kN): ")) # vamos obter o menor lado do pilar (menor dimensão da seção transversal) if (hx < hy): b = hx else: b = hy # agora vamos calcular a área do pilar em centímetros quadrados area = hx * hy # a área está de acordo com a norma NBR 6118 (ABNT, 2014) if (area < 360): print("A área do pilar não pode ser inferior a 360cm2") return # vamos calcular a força normal de projeto Nd yn = 1.95 - (0.05 * b) # de acordo com a norma NBR 6118 (ABNT, 2014) Tabela 13.1 yf = 1.4 # regra geral para concreto armado Nd = yn * yf * Nk # e agora vamos calcular o momento fletor mínimo na direção x do pilar M1d_min_x = Nd * (1.5 + (0.03 * hx)) # e agora vamos calcular o momento fletor mínimo na direção y do pilar M1d_min_y = Nd * (1.5 + (0.03 * hy)) # agora vamos calcular a excentricidade mínima de 1ª ordem na direção x do pilar e1x_min = M1d_min_x / Nd # e finalmente a excentricidade mínima de 1ª ordem na direção y do pilar e1y_min = M1d_min_y / Nd # e mostramos os resultados print("\nO momento fletor mínimo na direção x é: {0} kN.cm".format( round(M1d_min_x, 2))) print("O momento fletor mínimo na direção y é: {0} kN.cm".format( round(M1d_min_y, 2))) print("A excentricidade mínima de 1ª ordem na direção x é: {0} cm".format( round(e1x_min, 2))) print("A excentricidade mínima de 1ª ordem na direção y é: {0} cm".format( round(e1y_min, 2))) if __name__== "__main__": main() Ao executar este código Python nós teremos o seguinte resultado: Informe a dimensão do pilar na direção x (em cm): 40 Informe a dimensão do pilar na direção y (em cm): 19 Informe a carga total no pilar (em kN): 841.35 O momento fletor mínimo na direção x é: 3180.3 kN.cm O momento fletor mínimo na direção y é: 2438.23 kN.cm A excentricidade mínima de 1ª ordem na direção x é: 2.7 cm A excentricidade mínima de 1ª ordem na direção y é: 2.07 cm |
![]() |
Python ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas |
Como calcular o coeficiente angular de uma reta em Python dados dois pontos no plano cartesianoQuantidade de visualizações: 3080 vezes |
O Coeficiente Angular de uma reta é a variação, na vertical, ou seja, no eixo y, pela variação horizontal, no eixo x. Sim, isso mesmo. O coeficiente angular de uma reta tem tudo a ver com a derivada, que nada mais é que a taxa de variação de y em relação a x. Vamos começar analisando o seguinte gráfico, no qual temos dois pontos distintos no plano cartesiano: ![]() Veja que o segmento de reta AB passa pelos pontos A (x=3, y=6) e B (x=9, y=10). Dessa forma, a fórmula para obtenção do coeficiente angular m dessa reta é: \[\ \text{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tg \theta \] Note que __$\Delta y__$ e __$\Delta x__$ são as variações dos valores no eixo das abscissas e no eixo das ordenadas. No triângulo retângulo que desenhei acima, a variação __$\Delta y__$ se refere ao comprimento do cateto oposto e a variação __$\Delta y__$ se refere ao comprimento do cateto adjascente. Veja agora o trecho de código na linguagem Python que solicita as coordenadas x e y dos dois pontos, efetua o cálculo e mostra o coeficiente angular m da reta que passa pelos dois pontos: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- # vamos importar o módulo Math import math as math def main(): # x e y do primeiro ponto x1 = float(input("Coordenada x do primeiro ponto: ")) y1 = float(input("Coordenada y do primeiro ponto: ")) # x e y do segundo ponto x2 = float(input("Coordenada x do segundo ponto: ")) y2 = float(input("Coordenada y do segundo ponto: ")) # agora vamos calcular o coeficiente angular m = (y2 - y1) / (x2 - x1) # e mostramos o resultado print("O coeficiente angular é: %f\n\n" % m) if __name__== "__main__": main() Ao executar este código em linguagem Python nós teremos o seguinte resultado: Coordenada x do primeiro ponto: 3 Coordenada y do primeiro ponto: 6 Coordenada x do segundo ponto: 9 Coordenada y do segundo ponto: 10 O coeficiente angular é: 0.666667 Veja agora como podemos calcular o coeficiente angular da reta que passa pelos dois pontos usando o Teorema de Pitágoras. Note que agora nós estamos tirando proveito da tangente do ângulo Theta (__$\theta__$), também chamado de ângulo Alfa ou Alpha (__$\alpha__$): ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- # vamos importar o módulo Math import math as math def main(): # x e y do primeiro ponto x1 = float(input("Coordenada x do primeiro ponto: ")) y1 = float(input("Coordenada y do primeiro ponto: ")) # x e y do segundo ponto x2 = float(input("Coordenada x do segundo ponto: ")) y2 = float(input("Coordenada y do segundo ponto: ")) # vamos obter o comprimento do cateto oposto cateto_oposto = y2 - y1 # e agora o cateto adjascente cateto_adjascente = x2 - x1 # vamos obter o ângulo tetha, ou seja, a inclinação da hipetunesa # (em radianos, não se esqueça) tetha = math.atan2(cateto_oposto, cateto_adjascente) # e finalmente usamos a tangente desse ângulo para calcular # o coeficiente angular tangente = math.tan(tetha) # e mostramos o resultado print("O coeficiente angular é: %f\n\n" % tangente) if __name__== "__main__": main() Ao executar este código você verá que o resultado é o mesmo. No entanto, fique atento às propriedades do coeficiente angular da reta: 1) O coeficiente angular é positivo quando a reta for crescente, ou seja, m > 0; 2) O coeficiente angular é negativo quando a reta for decrescente, ou seja, m < 0; 3) Se a reta estiver na horizontal, ou seja, paralela ao eixo x, seu coeficiente angular é zero (0). 4) Se a reta estiver na vertical, ou seja, paralela ao eixo y, o coeficiente angular não existe. |
Python ::: Dicas & Truques ::: Lista (List) |
Como criar uma lista Python vazia e adicionar itens a ela usando o laço for..inQuantidade de visualizações: 11830 vezes |
Nesta dica mostrarei como é possível usar o operador de vetor "[]" para criar um objeto List vazio na linguagem Python. Em seguida usaremos o laço for..in para adicionar 10 elementos a esta lista. Veja o código completo para o exemplo: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- """ Este exemplo mostra como criar uma list vazia e inicializá-la usando o laço for. """ def main(): # cria uma lista vazia valores = [] # adiciona valores a ela for num in range(1, 11): valores += [(num * 2)] # exibe os valores da lista for num in valores: print(num) if __name__== "__main__": main() Ao executar este código Python nós teremos o seguinte resultado: 2 4 6 8 10 12 14 16 18 20 |
Python ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas |
Como calcular o cateto oposto dadas as medidas da hipotenusa e do cateto adjascente em PythonQuantidade de visualizações: 2663 vezes |
Todos estamos acostumados com o Teorema de Pitágoras, que diz que "o quadrado da hipotenusa é igual à soma dos quadrados dos catetos". Baseado nessa informação, fica fácil retornar a medida do cateto oposto quando temos as medidas da hipotenusa e do cateto adjascente. Isso, claro, via programação em linguagem Python. Comece observando a imagem a seguir: ![]() Veja que, nessa imagem, eu já coloquei os comprimentos da hipotenusa, do cateto oposto e do cateto adjascente. Para facilitar a conferência dos cálculos, eu coloquei também os ângulos theta (que alguns livros chamam de alfa) e beta já devidamente calculados. A medida da hipotenusa é, sem arredondamentos, 36.056 metros. Então, sabendo que o quadrado da hipotenusa é igual à soma dos quadrados dos catetos (Teorema de Pitógoras): \[c^2 = a^2 + b^2\] Tudo que temos que fazer é mudar a fórmula para: \[a^2 = c^2 - b^2\] Veja que agora o quadrado do cateto oposto é igual ao quadrado da hipotenusa menos o quadrado do cateto adjascente. Não se esqueça de que a hipotenusa é o maior lado do triângulo retângulo. Veja agora como esse cálculo é feito em linguagem Python: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- # vamos importar o módulo Math import math as math def main(): c = 36.056 # medida da hipotenusa b = 30 # medida do cateto adjascente # agora vamos calcular o comprimento da cateto oposto a = math.sqrt(math.pow(c, 2) - math.pow(b, 2)) # e mostramos o resultado print("A medida do cateto oposto é: %f" % a) if __name__== "__main__": main() Ao executar este código Python nós teremos o seguinte resultado: A medida do cateto oposto é: 20.000878 Como podemos ver, o resultado retornado com o código Python confere com os valores da imagem apresentada. |
Desafios, Exercícios e Algoritmos Resolvidos de Python |
Veja mais Dicas e truques de Python |
Dicas e truques de outras linguagens |
JavaScript - Como retornar o tamanho de uma string em JavaScript usando a propriedade length do objeto String C# - Como adicionar ou subtrair meses de uma data em C# usando a função AddMonths() da classe DateTime |
Códigos Fonte |
![]() Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais |
![]() Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais |
Linguagens Mais Populares |
1º lugar: Java |