Você está aqui: Python ::: Python para Engenharia ::: Engenharia Civil - Cálculo Estrutural

Como calcular os esforços solicitantes majorados em pilares usando Python - Python para Engenharia Civil

Quantidade de visualizações: 202 vezes


Quando estamos dimensionando pilares em concreto armado em geral, a primeira coisa que devemos fazer é calcular os esforços solicitantes, ou seja, as cargas que estão chegando ao pilar.

No caso dos pilares intermediários, ou seja, pilares que residem fora dos cantos e extremidades da estrutura e que, por isso, recebem a carga em seu centro geométrico, considera-se a compressão centrada. Dessa forma, chamamos de Nk o somatório de todas as cargas verticais atuantes na estrutura e podemos desprezar as excentricidades de 1ª ordem.

De acordo com a NBR 6118 (ABNT, 2014), para a situação de projeto, essa força normal Nk deve ser majorada pelos coeficientes γn e γf, resultando em uma força normal de projeto chamada Nd.

O coeficiente γn deve majorar os esforços solicitantes finais de cálculo de acordo com a menor dimensão do pilar. A norma diz que a menor dimensão que um pilar pode ter é 19cm, mas, em alguns casos, podemos ter a menor dimensão de até 14cm, precisando, para isso, majorar os esforços solicitantes. Nos comentários do código Python eu mostro como esse cálculo é feito, de acordo com a NBR 6118 (ABNT, 2014), é claro.

O coeficiente γf, na maioria dos casos, possui o valor 1,4 e entra no cálculo para converter a força normal Nk em força normal de projeto Nd.

A fórmula para o cálculo dos esforços solicitantes majorados em pilares intermediários é:

\[ Nd = \gamma n \cdot \gamma f \cdot Nk \]

Onde:

γn majora os esforços de acordo com a menor dimensão do pilar de acordo com a NBR 6118 (ABNT, 2014).

γf em geral possui o valor 1.4 para majorar os esforços em estruturas de concreto armado.

Nk é a força normal característica aplicada ao pilar, em kN.

Nd é a força normal de projeto, em kN.

Vamos então ao código Python, que solicitará ao usuário os valores de suas dimensões hx e hy (em centímetros) e a carga, ou seja, a força normal característica chegando no pilar em kN e vamos mostrar a força normal de projeto Nd:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# método principal
def main():
  # vamos pedir as dimensões do pilar
  hx = float(input("Informe a dimensão do pilar na direção x (em cm): "))
  hy = float(input("Informe a dimensão do pilar na direção y (em cm): "))

  # vamos pedir a carga total no pilar em kN
  Nk = float(input("Informe a carga total no pilar (em kN): "))

  # vamos obter o menor lado do pilar (menor dimensão da seção transversal)
  if (hx < hy):
    b = hx
  else:
    b = hy
  
  # agora vamos calcular a área do pilar em centímetros quadrados
  area = hx * hy

  # a área está de acordo com a norma NBR 6118 (ABNT, 2014)
  if (area < 360):
    print("A área do pilar não pode ser inferior a 360cm2")
    return

  # vamos calcular a força normal de projeto Nd
  yn = 1.95 - (0.05 * b) # de acordo com a norma NBR 6118 (ABNT, 2014) Tabela 13.1
  yf = 1.4 # regra geral para concreto armado
  Nd = yn * yf * Nk

  # e mostramos os resultados
  print("\nA área do pilar é: {0} cm2".format(round(area, 2)))
  print("A menor dimensão do pilar é: {0} cm".format(round(b, 2)))
  print("O valor do coeficiente yn é: {0}".format(round(yn, 2)))
  print("A força normal de projeto Nd é: {0} kN".format(round(Nd, 2)))

if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

Informe a dimensão do pilar na direção x (em cm): 40
Informe a dimensão do pilar na direção y (em cm): 19
Informe a carga total no pilar (em kN): 841.35

A área do pilar é: 760.0 cm2
A menor dimensão do pilar é: 19.0 cm
O valor do coeficiente yn é: 1.0
A força normal de projeto Nd é: 1177.89 kN

Link para compartilhar na Internet ou com seus amigos:

Python ::: Dicas & Truques ::: Strings e Caracteres

Como testar se uma substring está contida no final de uma string em Python usando a função endswith()

Quantidade de visualizações: 9029 vezes
Em várias situações nós precisamos verificar se uma palavra, frase ou texto termina com um determinado texto, ou seja, uma substring. A linguagem Python nos oferece a função endswith(), que possui a seguinte assinatura:

endswith(substring[, start[, end]])


Se o argumento start for especificado, a busca inicia a partir de tal índice. Se o argumento end for especificado, a busca terminará no índice definido.

Dessa forma, a função endswith retorna 1 se a substring estiver contida no final da string. Do contrário, o valor 0 será retornado.

Veja o código completo para o exemplo:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

def main():
  frase = "Gosto de programar em Java"
 
  if frase.endswith("Java") == 1:
    print("A frase termina com \"Java\"")
  else:
    print("A frase NÃO termina com \"Java\"")   
 
if __name__== "__main__":
  main()

Ao executarmos este código nós teremos o seguinte resultado:

A frase termina com "Java"


Python ::: Python para Engenharia ::: Engenharia Civil - Cálculo Estrutural

Como calcular o peso que um pilar aguenta usando Python - Python para Engenharia Civil

Quantidade de visualizações: 188 vezes


O sonho de todo estudante de Engenharia Civil é poder responder, com segurança, a uma das perguntas mais recorrentes no nosso dia-a-dia: Quanto de peso um pilar aguenta?

Para responder, basta nos lembrarmos de que o concreto é muito resistente à compressão, e, no caso dos pilares, a armadura é usada, em sua maior parte, para combater a flambagem, que é quando o pilar tende a fletir para os lados, parecendo-se com um arco ou com uma barriga de chope.

Então, uma vez que o pilar recebe sua carga em seu eixo (carga axial) e o concreto é muito resistente à compressão, só precisamos nos concentrar na resistência característica do concreto à compressão e na área da seção transversal do pilar.

Sempre que falamos de resistência do concreto, nós estamos falando de FCK C15, C20, C25, C30, etc, que são os termos usados para designar sua resistência. Assim, um concreto C25 é o mesmo que 25 MPa, ou seja, esse concreto resiste a 250Kg/cm2.

Os concretos usinados, em geral, vêm com resistência de 25 MPa para cima, enquanto aquele concreto que fazemos na obra, na betoneira, usando a combinação de 3x1, chega no máximo a 15 MPa. Além disso, é importante nos lembrarmos de que a norma NBR 6118/2014 exige que o concreto seja igual ou superior a 25 MPa.

Há também o fator de segurança de 40%, também exigido pela norma NBR 6118/2014. Dessa forma, se o concreto for de 25 MPa, aplicado o fator de segurança, só podemos contar com 15 MPa mais ou menos, o que daria 150Kg/cm2.

Vamos ver código agora? Veja o código Python completo que pede os lados b (base) e h (altura) do pilar e o FCK do concreto usado e retorna o peso que o pilar suporta (já aplicado o fator de segurança):

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# Algoritmo Python que calcula o peso suportado por um pilar
# dados os seus lados e o FCK do concreto

# função principal do programa
def main():
  # vamos ler o lado b do pilar
  base = float(input("Informe a base (b) do pilar em cm: "))
  # vamos ler a altura h do pilar
  altura = float(input("Informe a altura (h) do pilar em cm: "))

  # vamos calcular a área da seção transversal do pilar
  area = base * altura

  # agora vamos ler o FCK do concreto em MPa
  fck = float(input("Informe o FCK do concreto em MPa: "))

  # vamos calcular o peso suportado pelo pilar
  peso_suportado = area * (fck * 10)
  # vamos aplicar o fator de segurança de 40%
  peso_suportado = peso_suportado / 1.4

  # e mostramos o resultado
  print("A área da seção transversal é: {0} cm2".format(area))
  print("Esse pilar suporta {0} kg".format(peso_suportado))

if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

Informe a base (b) do pilar em cm: 14
Informe a altura (h) do pilar em cm: 26
Informe o FCK do concreto em MPa: 20
A área da seção transversal é: 364.0 cm2
Esse pilar suporta 52000.0 kg

Lembre-se de que a área mínima da seção de um pilar, de acordo com a NBR 6118/2014 é de 360 cm2.


Python ::: Python para Engenharia ::: Geometria Analítica e Álgebra Linear

Python para Engenharia - Como multiplicar um vetor por um escalar usando Python e NumPy

Quantidade de visualizações: 3325 vezes
Esta dica de Python e NumPy é direcionada, principalmente, aos estudantes de Engenharia, que se deparam, logo no início do curso, com o estudo da Geometria Analítica e gostariam de entender melhor a multiplicação de vetores por um escalar. Lembre-se de que um escalar é um valor único, enquanto vetores e matrizes são estruturas que guardam vários valores ao mesmo tempo.

Nosso primeiro exemplo será feito em cima de um vetor no R3, ou seja, no espaço, com os seguintes valores: [3, -5, 4]. O escalar usado será o valor 2, ou seja, temos que multiplicar cada valor no vetor pelo valor 2 e, dessa forma, obtermos um novo vetor, também no R3. Vetores no R3 possuem valores para x, y e z (três dimensões), enquanto vetores no R2 possuem apenas o x e y.

Veja como a linguagem Python facilita a operação da multiplicação de um vetor R3 por um escalar:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# importamos a bibliteca NumPy
import numpy as np
 
def main():
  # declara e cria o vetor
  vetor = np.array([3, -5, 4])
   
  # agora vamos multiplicar este vetor pelo escalar 2
  escalar = 2
  novoVetor = vetor * escalar
 
  # vamos exibir o resultado
  print("Vetor inicial: ", vetor)
  print("Valor do escalar: ", escalar)
  print("Novo vetor: ", novoVetor)
 
if __name__== "__main__":
  main()

Este código Python vai gerar o seguinte resultado:

Vetor inicial: [3 -5 4]
Valor do escalar: 2
Novo vetor: [6 -10 8]

Agora, saindo da Geometria Analítica e indo para a Álgebra Linear, veja como podemos efetuar a mesma operação em uma matriz de 2 linhas e 3 colunas (recorde que, em Python, uma matriz nada mais é do que um vetor de vetores, ou seja, cada elemento do vetor contém outro vetor):

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# importamos a bibliteca NumPy
import numpy as np
 
def main():
  # declara e cria a matriz
  matriz = np.array([(4, 12, 50), (5, 3, 1), (11, 9, 7)])
   
  # agora vamos multiplicar esta matriz pelo escalar 2
  escalar = 2
  novaMatriz = matriz * escalar
 
  # vamos exibir o resultado
  print("Matriz inicial: ", matriz)
  print("Valor do escalar: ", escalar)
  print("Nova matriz: ", novaMatriz)
 
if __name__== "__main__":
  main()

Ao executarmos este código Python nós teremos o seguinte resultado:

Matriz inicial: [[4 12 50]
[5 3 1]
[11 9 7]]
Valor do escalar: 2
Nova matriz: [[8 24 100]
[10 6 2]
[22 18 14]]


Desafios, Exercícios e Algoritmos Resolvidos de Python

Veja mais Dicas e truques de Python

Dicas e truques de outras linguagens

Códigos Fonte

Programa de Gestão Financeira Controle de Contas a Pagar e a Receber com Cadastro de Clientes e FornecedoresSoftware de Gestão Financeira com código fonte em PHP, MySQL, Bootstrap, jQuery - Inclui cadastro de clientes, fornecedores e ticket de atendimento
Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais
Controle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidadesControle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidades
Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: Delphi
6º lugar: C
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 29 usuários muito felizes estudando em nosso site.