![]() |
|
||||
![]() Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais |
Você está aqui: Python ::: Python para Engenharia ::: Engenharia Civil - Cálculo Estrutural |
||||
Como calcular os esforços solicitantes majorados em pilares usando Python - Python para Engenharia CivilQuantidade de visualizações: 282 vezes |
||||
![]() Quando estamos dimensionando pilares em concreto armado em geral, a primeira coisa que devemos fazer é calcular os esforços solicitantes, ou seja, as cargas que estão chegando ao pilar. No caso dos pilares intermediários, ou seja, pilares que residem fora dos cantos e extremidades da estrutura e que, por isso, recebem a carga em seu centro geométrico, considera-se a compressão centrada. Dessa forma, chamamos de Nk o somatório de todas as cargas verticais atuantes na estrutura e podemos desprezar as excentricidades de 1ª ordem. De acordo com a NBR 6118 (ABNT, 2014), para a situação de projeto, essa força normal Nk deve ser majorada pelos coeficientes γn e γf, resultando em uma força normal de projeto chamada Nd. O coeficiente γn deve majorar os esforços solicitantes finais de cálculo de acordo com a menor dimensão do pilar. A norma diz que a menor dimensão que um pilar pode ter é 19cm, mas, em alguns casos, podemos ter a menor dimensão de até 14cm, precisando, para isso, majorar os esforços solicitantes. Nos comentários do código Python eu mostro como esse cálculo é feito, de acordo com a NBR 6118 (ABNT, 2014), é claro. O coeficiente γf, na maioria dos casos, possui o valor 1,4 e entra no cálculo para converter a força normal Nk em força normal de projeto Nd. A fórmula para o cálculo dos esforços solicitantes majorados em pilares intermediários é: \[ Nd = \gamma n \cdot \gamma f \cdot Nk \] Onde: γn majora os esforços de acordo com a menor dimensão do pilar de acordo com a NBR 6118 (ABNT, 2014). γf em geral possui o valor 1.4 para majorar os esforços em estruturas de concreto armado. Nk é a força normal característica aplicada ao pilar, em kN. Nd é a força normal de projeto, em kN. Vamos então ao código Python, que solicitará ao usuário os valores de suas dimensões hx e hy (em centímetros) e a carga, ou seja, a força normal característica chegando no pilar em kN e vamos mostrar a força normal de projeto Nd:
Ao executar este código Python nós teremos o seguinte resultado: Informe a dimensão do pilar na direção x (em cm): 40 Informe a dimensão do pilar na direção y (em cm): 19 Informe a carga total no pilar (em kN): 841.35 A área do pilar é: 760.0 cm2 A menor dimensão do pilar é: 19.0 cm O valor do coeficiente yn é: 1.0 A força normal de projeto Nd é: 1177.89 kN |
||||
![]() |
||||
Python ::: Dicas & Truques ::: Strings e Caracteres |
||||
Como testar se uma string contém apenas letras em Python usando a função isalpha()Quantidade de visualizações: 14824 vezes |
||||
Este exemplo mostra como podemos a função isalpha() do Python para verificar se uma string contém apenas letras, ou seja, nada de números, espaços nem pontuação. Se algum número, espaço, um caractere especial ou pontuação estiver contido, a função retorna False.
Ao executar este código Python nós teremos o seguinte resultado: A string contém apenas letras. | ||||
Python ::: Dicas & Truques ::: Matemática e Estatística |
||||
Como obter a série de Fibonacci recursivamente usando Python - Como calcular a sequência de Fibonacci em PythonQuantidade de visualizações: 15834 vezes |
||||
Na matemática, os números de Fibonacci são uma sequência ou sucessão definida como recursiva pela fórmula: Fn = Fn - 1 + Fn - 2 Os primeiros números de Fibonacci são: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, ... Esta sequência foi descrita primeiramente por Leonardo de Pisa, também conhecido como Fibonacci, para descrever o crescimento de uma população de coelhos. Veja um techo de código que mostra como calcular e mostrar a sequência de Fibonacci de forma recursiva:
Ao executarmos este código nós teremos um resultado parecido com: Informe um inteiro: 7 Fibonacci(7) = 13 E agora saindo um pouco de Python: Leonardo Pisa (1175-1240) publicou a sequência de Fibonacci no seu livro Liber Abaci (Livro do Ábaco, em português), o qual data de 1202. Porém, comenta-se que os indianos já haviam descrito essa série antes dele. Se pegarmos um número da série de Fibonacci e o dividirmos pelo seu antecessor (por exemplo: 55 dividido por 34), teremos quase sempre o valor 1,618. Este valor é aplicado com muita frequência em análises financeiras e na informática. Leonardo Da Vinci, que chamou essa sequência de Divina Proporção, a usou para fazer desenhos perfeitos. De fato, se observarmos atentamente, perceberemos a sequência de Fibonacci também na natureza. São exemplos disso as folhas das árvores, as pétalas das rosas, os frutos, como o abacaxi, as conchas espiraladas dos caracóis ou as galáxias. | ||||
Python ::: NumPy Python Library (Biblioteca Python NumPy) ::: Matemática e Estatística |
||||||||
Python para estatística - Como calcular a mediana de um conjunto de valores usando o método median() da biblioteca NumPy da linguagem PythonQuantidade de visualizações: 16435 vezes |
||||||||
A mediana (Md) representa o valor central de um conjunto de dados. Para encontrá-la, é necessário colocar os valores em ordem crescente ou decrescente. Quando o número elementos de um conjunto é par, a mediana é encontrada pela média dos dois valores centrais. Assim, esses valores são somados e divididos por dois. Veja a seguinte figura: ![]() A biblioteca NumPy do Python nos oferece o método median(), que recebe um vetor de valores númericos (inteiro ou decimais) e retorna a mediana deles. Veja um exemplo com os primeiros valores da figura (um conjnto ímpar):
Ao executarmos este código nós teremos o seguinte resultado: A mediana dos valores é: 7.0 Veja agora o exemplo usando o segundo grupo de valores da imagem (conjunto par):
O resultado da execução desse código será: A mediana dos valores é: 5.5 É importante observar que o método median() da NumPy não exige que os valores estejam ordenados. A própria função se encarrega dessa tarefa. | ||||||||
Desafios, Exercícios e Algoritmos Resolvidos de Python |
Veja mais Dicas e truques de Python |
Dicas e truques de outras linguagens |
C# - Como adicionar ou subtrair dias de uma data em C# usando o método AddDays() da estrutura DateTime |
E-Books em PDF |
||||
|
||||
|
||||
Linguagens Mais Populares |
||||
1º lugar: Java |