Você está aqui: Python ::: Desafios e Lista de Exercícios Resolvidos ::: Pesquisa Operacional |
Programação Linear em Python - Uma madeireira deseja retornar 1000kg de lenha, 2000kg de madeira para móveis e 50 metros - Desafio de Programação Resolvido em PythonQuantidade de visualizações: 657 vezes |
Pergunta/Tarefa: Este exercício de Python aborda o uso da biblioteca PuLP para resolver um problema de Pesquisa Operacional usando Programação Linear. Uma madeireira deseja obter 1000kg de lenha, 2000kg de madeira para móveis e 50 metros quadrados de casca de árvore, dispondo de carvalho e pinheiro, sendo que o carvalho gera 40kg de lenha, 150kg de madeira e 3 metros quadrados de casca aproveitável; o pinheiro 100kg de lenha, 60kg de madeira e 8 metros quadrados de casca aproveitável. Formule o problema, de modo a minimizar os custos, sabendo que cada carvalho custa R$ 1500,00 para a empresa e cada pinheiro R$ 1200,00. Em seguida use a API de Programação Linear do PuLP para resolver o problema e mostrar a melhor solução. Sua saída deverá ser parecida com: x: 11.111111 y: 5.5555556 Antes de passarmos para o código Python é importante entendermos e fazermos a modelagem do problema. Neste exercício busca-se encontrar o custo mínimo. Assim, a nossa função objetivo será dada pela combinação dos preços do carvalho e do pinheiro. Veja: Zmin = 1500x + 1200y Aqui nós definimos a variável x para o carvalho e a variável y para o pinheiro. Agora que já temos a função Z, o próximo passo é analizarmos as restrições. Note que a empresa precisa de 1000kg de lenha. O carvalho gera 40kg de lenha, enquanto o pinheiro gera 100kg. Então nossa primeira restrição é: R1 = 40x + 100y >= 1000 Para a segunda restrição nós temos que a empresa precisa de 2000kg de madeira. O carvalho gera 150kg de madeira, enquanto o pinheiro gera 60kg. Assim, nossa segunda restrição é: R2 = 150x + 60y >= 2000 Finalmente, para a terceira restrição, sabemos que a empresa necessita de 50 metros quadrados de casca de árvore. O carvalho gera 3 metros quadrados de casca aproveitável, enquanto o pinheiro gera 8 metros quadradros. Então a terceira restrição é: R3 = 3x + 8y >= 50 As restrições 4 e 5 dizem que tanto o x quanto o y devem ser maiores ou iguais a zero, e que ambos devem pertencer aos números reais. Veja agora como usamos os dados de formulação para resolver este exercício usando Python e a biblioteca PuLP: # vamos importar as ferramentas necessárias from pulp import LpMinimize, LpProblem, LpVariable # método principal def main(): # vamos criar o modelo modelo = LpProblem(name="Pesquisa Operacional em Python", sense=LpMinimize) # agora inicializamos as variáveis de decisão x = LpVariable(name="x", lowBound=0) y = LpVariable(name="y", lowBound=0) # vamos adicionar as restrições de acordo com a formulação do problema modelo += (40 * x + 100 * y >= 1000, "R1") modelo += (150 * x + 60 * y >= 2000, "R2") ...... Note como o PuLP nos deu o custo mínimo de 23333.33 para atingir o objetivo desejado pela madeireira. |
![]() |
Mais Desafios de Programação e Exercícios e Algoritmos Resolvidos de Python |
Veja mais Dicas e truques de Python |
Dicas e truques de outras linguagens |
E-Books em PDF |
||||
|
||||
|
||||
Linguagens Mais Populares |
||||
1º lugar: Java |