Ofereço ajuda em Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD
+55 (062) 98553-6711
Ofereço ajuda em PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO
+55 (062) 98243-1195

Você está aqui: VB.NET ::: Dicas & Truques ::: Matemática e Estatística

Como resolver uma equação do segundo grau em VB.NET - Como calcular Bhaskara em VB.NET

Quantidade de visualizações: 532 vezes
Como resolver uma equação do 2º grau usando VB.NET

Nesta dica mostrarei como encontrar as raízes de uma equação quadrática, ou seja, uma equação do 2º usando a linguagem VB.NET.

Definimos como equação do 2º grau ou equações quadráticas qualquer equação do tipo ax² + bx + c = 0 em que a, b e c são números reais e a ≠ 0. Ela recebe esse nome porque, no primeiro membro da igualdade, há um polinômio de grau dois com uma única incógnita.

Note que, dos coeficientes a, b e c, somente o a é diferente de zero, pois, caso ele fosse igual a zero, o termo ax² seria igual a zero, logo a equação se tornaria uma equação do primeiro grau: bx + c = 0.

Independentemente da ordem da equação, o coeficiente a sempre acompanha o termo x², o coeficiente b sempre acompanha o termo x, e o coeficiente c é sempre o termo independente.

Como resolver uma equação do 2º grau

Conhecemos como soluções ou raízes da equação ax² + bx + c = 0 os valores de x que fazem com que essa equação seja verdadeira. Uma equação do 2º grau pode ter no máximo dois números reais que sejam raízes dela. Para resolver equações do 2º grau completas, existem dois métodos mais comuns:

a) Fórmula de Bhaskara;
b) Soma e produto.

O primeiro método é bastante mecânico, o que faz com que muitos o prefiram. Já para utilizar o segundo, é necessário o conhecimento de múltiplos e divisores. Além disso, quando as soluções da equação são números quebrados, soma e produto não é uma alternativa boa.

Como resolver uma equação do 2º grau usando Bhaskara

Como nosso código VB.NET vai resolver a equação quadrática usando a Fórmula de Bhaskara, o primeiro passo é encontrar o determinante. Veja:

\[\Delta =b^2-4ac\]

Nem sempre a equação possui solução real. O valor do determinante é que nos indica isso, existindo três possibilidades:

a) Se determinante > 0, então a equação possui duas soluções reais.
b) Se determinante = 0, então a equação possui uma única solução real.
c) Se determinante < 0, então a equação não possui solução real.

Encontrado o determinante, só precisamos substituir os valores, incluindo o determinante, na Fórmula de Bhaskara:

\[x = \dfrac{- b\pm\sqrt{b^2- 4ac}}{2a}\]

Vamos agora ao código VB.NET. Nossa aplicação vai pedir para o usuário informar os valores dos três coeficientes a, b e c e, em seguida, vai apresentar as raizes da equação:

----------------------------------------------------------------------
Precisa de ajuda? Chama no WhatsApp +55 (62) 98553-6711 (Osmar)

Este código foi útil? Paga um cafezinho pra mim :-(
PIX: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

Imports System

Module Program
  Sub Main(args As String())
    ' os coeficientes
    Dim a, b, c As Double
    ' as duas raizes, a imaginaria e o discriminante
    Dim raiz1, raiz2, imaginaria, discriminante As Double

    ' vamos pedir para o usuário informar os valores dos coeficientes
    Console.Write("Valor do coeficiente a: ")
    a = Double.Parse(Console.ReadLine())
    Console.Write("Valor do coeficiente b: ")
    b = Double.Parse(Console.ReadLine())
    Console.Write("Valor do coeficiente c: ")
    c = Double.Parse(Console.ReadLine())

    ' vamos calcular o discriminante
    discriminante = (b * b) - (4 * a * c)

    ' a equação possui duas soluções reais?
    If discriminante > 0 Then
      raiz1 = (-b + Math.Sqrt(discriminante)) / (2 * a)
      raiz2 = (-b - Math.Sqrt(discriminante)) / (2 * a)
      Console.Write("Existem duas raizes: x1 = " & raiz1 _
        & " e x2 = " & raiz2)
    ElseIf discriminante = 0 Then
      ' a equação possui uma única solução real?
      raiz1 = raiz2 = -b / (2 * a)
      Console.Write("Existem duas raizes iguais: x1 = " _
        & raiz1 & " e x2 = " & raiz2)
    ElseIf discriminante < 0 Then
      ' a equação não possui solução real?
      raiz1 = raiz2 = -b / (2 * a)
      imaginaria = Math.Sqrt(-discriminante) / (2 * a)
      Console.Write("Existem duas raízes complexas: x1 = " &
        raiz1 & " + " & imaginaria & " e x2 = " & raiz2 _
        & " - " & imaginaria)
    End If

    Console.WriteLine(vbCrLf & "Pressione qualquer tecla para sair...")
    ' pausa o programa
    Console.ReadKey()
  End Sub
End Module

Ao executar este código VB.NET nós teremos o seguinte resultado:

Valor do coeficiente a: 1
Valor do coeficiente b: 2
Valor do coeficiente c: -3
Existem duas raizes: x1 = 1 e x2 = -3

Link para compartilhar na Internet ou com seus amigos:

Desafios, Exercícios e Algoritmos Resolvidos de VB.NET

Veja mais Dicas e truques de VB.NET

Dicas e truques de outras linguagens

E-Books em PDF

E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 19 usuários muito felizes estudando em nosso site.