Você está aqui: Python ::: Desafios e Lista de Exercícios Resolvidos ::: Python Básico

Como testar se um número é potência de quatro usando Python - Desafio de Programação Resolvido em Python

Quantidade de visualizações: 597 vezes
Pergunta/Tarefa:

Escreva um programa Python contendo um método que recebe um número inteiro e retorna um valor boolean indicando se o valor informado é potência de quatro.

Sua saída deverá ser parecida com:

Informe um valor inteiro: 8
O valor 8 não é potência de quatro
Informe um valor inteiro: 64
O valor 64 é potência de quatro
Informe um valor inteiro: 16
O valor 16 é potência de quatro
Resposta/Solução:

Veja a resolução comentada deste exercício usando Python:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# método que recebe um número inteiro e informe se ele é
# potência de quatro
def is_potencia_quatro(n):
  # enquanto o módulo do número por quatro for igual a zero
  while n % 4 == 0:
    # número recebe ele mesmo dividido por quatro
    n = n // 4
    
  # returna verdadeiro se número for igual a 1
  return n == 1

# método principal
def main():
  # vamos pedir para o usuário informar um valor inteiro
  valor = int(input("Informe um valor inteiro: "))
    
  # vamos testar se o número informado é potência de quatro
  if is_potencia_quatro(valor):
    print("O valor {0} é potência de quatro".format(valor))
  else:
    print("O valor {0} não é potência de quatro".format(valor))
 
if __name__== "__main__":
  main()


Link para compartilhar na Internet ou com seus amigos:

Python ::: Python para Engenharia ::: Geometria Analítica e Álgebra Linear

Como calcular o determinante de uma matriz 3x3 usando a Método de Sarrus em Python - Python para Álgebra Linear

Quantidade de visualizações: 5134 vezes
Os estudos da Geometria Analítica e Álgebra Linear envolvem, em boa parte de seus cálculos, a magnitude de vetores, ou seja, o módulo, tamanho, comprimento ou intensidade dos vetores. E isso não é diferente em relação às matrizes.

Quando uma matriz é envolvida nos cálculos, com muita frequência precisamos obter o seu determinante, que nada mais é que um número real associado à todas as matrizes quadradas.

Nesta dica mostrarei como obter o determinante de uma matriz quadrada de ordem 3, ou seja, três linhas e três colunas, usando o Método de Sarrus (somente matrizes 3x3). Note que é possível obter o mesmo resultado com o Teorema de Laplace, que não está restrito às matrizes quadradas de ordem 3. Veja também que não considerei as propriedades do determinante, o que, em alguns casos, simplifica muito os cálculos.

Então, vamos supor a seguinte matriz 3x3:



O primeiro passo é copiarmos a primeira e a segunda colunas para o lado direito da matriz. Assim:



Agora dividimos a matriz em dois conjuntos: três linhas diagonais descendentes e três linhas diagonais ascendentes:



Agora é só efetuar cálculos. Multiplicamos e somamos os elementos de cada conjunto, subtraindo o segundo conjunto do primeiro. Veja:

(1 x 5 x 9 + 2 x 6 x 7 + 3 x 4 x 8) - (7 x 5 x 3 + 8 x 6 x 1 + 9 x 4 x 2) = 0

Como podemos ver, o determinante dessa matriz é 0.

E agora veja o código Python no qual declaramos e instanciamos uma matriz 3x3, em seguida, calculamos o seu determinante:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# importamos a bibliteca NumPy
import numpy as np

# função principal do programa
def main():
  # vamos criar uma matriz 3x3
  m = np.array([(1, 2, 3), (2, 5, 2), (1, 3, 1)])
  
  # calcula o determinante usando a Regra de Sarrus
  det = ((m[0][0] * m[1][1] * m[2][2]) + (m[0][1]  
    * m[1][2] * m[2][0]) + (m[0][2] * m[1][0] * m[2][1])) - ((m[2][0] 
    * m[1][1] * m[0][2]) + (m[2][1]  * m[1][2] * m[0][0]) + (m[2][2] 
    * m[1][0] * m[0][1]))
    
  # mostramos o resultado
  print("O determinante da matriz é: %f" % det)
  
if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

O determinante da matriz é: 2.0

É possível também obter o determinante de uma matriz (não restrita à dimensão 3x3) usando o método linalg.det() da biblioteca NumPy do Python. Veja o código a seguir:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# importamos a bibliteca NumPy
import numpy as np

# função principal do programa
def main():
  # vamos criar uma matriz 3x3
  m = np.array([(1, 2, 3), (2, 5, 2), (1, 3, 1)])
  
  # calcula o determinante usando apenas NumPy
  det = np.linalg.det(m)
    
  # mostramos o resultado
  print("O determinante da matriz é: %f" % det)
  
if __name__== "__main__":
  main()

Veja que usei a mesma matriz e, usando apenas o método linalg.det() nós obtemos o mesmo resultado.


Python ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas

Como calcular o cosseno de um ângulo em Python usando a função cos() do módulo Math - Calculadora de cosseno em Python

Quantidade de visualizações: 2461 vezes
Como calcular o cosseno de um ângulo em Python usando a função cos() do módulo Math - Calculadora de cosseno em Python

Em geral, quando falamos de cosseno, estamos falando do triângulo retângulo de Pitágoras (Teorema de Pitágoras). A verdade é que podemos usar a função cosseno disponível nas linguagens de programação para calcular o cosseno de qualquer número, mesmo nossas aplicações não tendo nenhuma relação com trigonometria.

No entanto, é sempre importante entender o que é a função cosseno. Veja a seguinte imagem:



Veja que temos um triângulo retângulo com as medidas já calculadas para a hipotenusa e os dois catetos, assim como os ângulos entre eles.

Assim, o cosseno é a razão entre o cateto adjascente e a hipotenusa, ou seja, o cateto adjascente dividido pela hipotenusa. Veja a fórmula:

\[\text{Cosseno} = \frac{\text{Cateto adjascente}}{\text{Hipotenusa}} \]

Então, se dividirmos 30 por 36.056 (na figura eu arredondei) nós teremos 0.8320, que é a razão entre o cateto adjascente e a hipotenusa (em radianos).

Agora, experimente calcular o arco-cosseno de 0.8320. O resultado será 0.5881 (em radianos). Convertendo 0.5881 radianos para graus, nós obtemos 33.69º, que é exatamente o ângulo em graus entre o cateto adjascente e a hipotenusa na figura acima.

Pronto! Agora que já sabemos o que é cosseno na trigonometria, vamos entender mais sobre a função cos() da linguagem Python. Esta função, que faz parte do módulo Math, recebe um valor numérico float e retorna um valor float, ou seja, também numérico) entre -1 até 1 (ambos inclusos). Veja:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# vamos importar o módulo Math
import math as math

def main():
  # vamos calcular o cosseno de três números
  print("Cosseno de 0 = %f" % math.cos(0))
  print("Cosseno de 1 = %f" % math.cos(1))
  print("Cosseno de 2 = %f" % math.cos(2))
  
if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

Cosseno de 0 = 1.000000
Cosseno de 1 = 0.540302
Cosseno de 2 = -0.416147

Note que calculamos os cossenos dos valores 0, 1 e 2. Observe como os resultados conferem com a curva da função cosseno mostrada abaixo:




Python ::: Python para Engenharia ::: Geometria Analítica e Álgebra Linear

Como somar os elementos da diagonal principal de uma matriz em Python

Quantidade de visualizações: 3550 vezes
A Matriz quadrada é um tipo especial de matriz que possui o mesmo número de linhas e o mesmo número de colunas, ou seja, dada uma matriz Anxm, ela será uma matriz quadrada se, e somente se, n = m, onde n é o número de linhas e m é o número de colunas.

Em geral as matrizes quadradas são chamadas de Matrizes de Ordem n, onde n é o número de linhas e colunas. Dessa forma, uma matriz de ordem 4 é uma matriz que possui 4 linhas e quatro colunas.

Toda matriz quadrada possui duas diagonais, e elas são muito exploradas tanto na matemática quanto na construção de algorítmos. Essas duas diagonais são chamadas de Diagonal Principal e Diagonal Secundária.

A diagonal principal de uma matriz quadrada une o seu canto superior esquerdo ao canto inferior direito. Veja:



Nesta dica veremos como calcular a soma dos valores dos elementos da diagonal principal de uma matriz usando Python. Para isso, só precisamos manter em mente que a diagonal principal de uma matriz A é a coleção das entradas Aij em que i é igual a j. Assim, tudo que temos a fazer é converter essa regra para código Python.

Veja um trecho de código Python completo no qual pedimos para o usuário informar os elementos da matriz e em seguida mostramos a soma dos elementos da diagonal superior:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

def main():
  # vamos declarar e construir uma matriz de três linhas
  # e três colunas
  linhas, colunas = (3, 3)
  matriz = [[0 for x in range(linhas)] for y in range(colunas)]
  soma_diagonal = 0 # guarda a soma dos elementos na diagonal
  # principal

  # vamos ler os elementos da matriz
  for i in range(len(matriz)):
    for j in range(len(matriz[i])):
      matriz[i][j] = int(input("Informe o valor para a linha " + str(i) 
        + " e coluna " + str(j) + ": "))

  print()
  for i in range(len(matriz)):
    for j in range(len(matriz[i])):
      print(matriz[i][j], end='  ')
    print()

  # vamos calcular a soma dos elementos da diagonal   
  # principal
  for i in range(len(matriz)):
    for j in range(len(matriz[i])):
      if i == j:
        soma_diagonal = soma_diagonal + matriz[i][j]

  # finalmente mostramos a soma da diagonal principal
  print("\nA soma dos elementos da diagonal principal é: %d" %
    soma_diagonal)  

if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

Informe o valor para a linha 0 e coluna 0: 3
Informe o valor para a linha 0 e coluna 1: 7
Informe o valor para a linha 0 e coluna 2: 9
Informe o valor para a linha 1 e coluna 0: 2
Informe o valor para a linha 1 e coluna 1: 4
Informe o valor para a linha 1 e coluna 2: 1
Informe o valor para a linha 2 e coluna 0: 5
Informe o valor para a linha 2 e coluna 1: 6
Informe o valor para a linha 2 e coluna 2: 8

3  7  9  
2  4  1  
5  6  8  

A soma dos elementos da diagonal principal é: 15



Desafios, Exercícios e Algoritmos Resolvidos de Python

Veja mais Dicas e truques de Python

Dicas e truques de outras linguagens

Códigos Fonte

Programa de Gestão Financeira Controle de Contas a Pagar e a Receber com Cadastro de Clientes e FornecedoresSoftware de Gestão Financeira com código fonte em PHP, MySQL, Bootstrap, jQuery - Inclui cadastro de clientes, fornecedores e ticket de atendimento
Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais
Controle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidadesControle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidades
Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: Delphi
6º lugar: C
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 23 usuários muito felizes estudando em nosso site.