Você está aqui: Python ::: Desafios e Lista de Exercícios Resolvidos ::: Python Básico |
Como testar se um número é potência de quatro usando Python - Desafio de Programação Resolvido em PythonQuantidade de visualizações: 597 vezes |
Pergunta/Tarefa: Escreva um programa Python contendo um método que recebe um número inteiro e retorna um valor boolean indicando se o valor informado é potência de quatro. Sua saída deverá ser parecida com: Informe um valor inteiro: 8 O valor 8 não é potência de quatro Informe um valor inteiro: 64 O valor 64 é potência de quatro Informe um valor inteiro: 16 O valor 16 é potência de quatro Veja a resolução comentada deste exercício usando Python: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- # método que recebe um número inteiro e informe se ele é # potência de quatro def is_potencia_quatro(n): # enquanto o módulo do número por quatro for igual a zero while n % 4 == 0: # número recebe ele mesmo dividido por quatro n = n // 4 # returna verdadeiro se número for igual a 1 return n == 1 # método principal def main(): # vamos pedir para o usuário informar um valor inteiro valor = int(input("Informe um valor inteiro: ")) # vamos testar se o número informado é potência de quatro if is_potencia_quatro(valor): print("O valor {0} é potência de quatro".format(valor)) else: print("O valor {0} não é potência de quatro".format(valor)) if __name__== "__main__": main() |
Link para compartilhar na Internet ou com seus amigos: |
Python ::: Python para Engenharia ::: Geometria Analítica e Álgebra Linear |
Como calcular o determinante de uma matriz 3x3 usando a Método de Sarrus em Python - Python para Álgebra LinearQuantidade de visualizações: 5134 vezes |
Os estudos da Geometria Analítica e Álgebra Linear envolvem, em boa parte de seus cálculos, a magnitude de vetores, ou seja, o módulo, tamanho, comprimento ou intensidade dos vetores. E isso não é diferente em relação às matrizes. Quando uma matriz é envolvida nos cálculos, com muita frequência precisamos obter o seu determinante, que nada mais é que um número real associado à todas as matrizes quadradas. Nesta dica mostrarei como obter o determinante de uma matriz quadrada de ordem 3, ou seja, três linhas e três colunas, usando o Método de Sarrus (somente matrizes 3x3). Note que é possível obter o mesmo resultado com o Teorema de Laplace, que não está restrito às matrizes quadradas de ordem 3. Veja também que não considerei as propriedades do determinante, o que, em alguns casos, simplifica muito os cálculos. Então, vamos supor a seguinte matriz 3x3: O primeiro passo é copiarmos a primeira e a segunda colunas para o lado direito da matriz. Assim: Agora dividimos a matriz em dois conjuntos: três linhas diagonais descendentes e três linhas diagonais ascendentes: Agora é só efetuar cálculos. Multiplicamos e somamos os elementos de cada conjunto, subtraindo o segundo conjunto do primeiro. Veja: (1 x 5 x 9 + 2 x 6 x 7 + 3 x 4 x 8) - (7 x 5 x 3 + 8 x 6 x 1 + 9 x 4 x 2) = 0 Como podemos ver, o determinante dessa matriz é 0. E agora veja o código Python no qual declaramos e instanciamos uma matriz 3x3, em seguida, calculamos o seu determinante: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- # importamos a bibliteca NumPy import numpy as np # função principal do programa def main(): # vamos criar uma matriz 3x3 m = np.array([(1, 2, 3), (2, 5, 2), (1, 3, 1)]) # calcula o determinante usando a Regra de Sarrus det = ((m[0][0] * m[1][1] * m[2][2]) + (m[0][1] * m[1][2] * m[2][0]) + (m[0][2] * m[1][0] * m[2][1])) - ((m[2][0] * m[1][1] * m[0][2]) + (m[2][1] * m[1][2] * m[0][0]) + (m[2][2] * m[1][0] * m[0][1])) # mostramos o resultado print("O determinante da matriz é: %f" % det) if __name__== "__main__": main() Ao executar este código Python nós teremos o seguinte resultado: O determinante da matriz é: 2.0 É possível também obter o determinante de uma matriz (não restrita à dimensão 3x3) usando o método linalg.det() da biblioteca NumPy do Python. Veja o código a seguir: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- # importamos a bibliteca NumPy import numpy as np # função principal do programa def main(): # vamos criar uma matriz 3x3 m = np.array([(1, 2, 3), (2, 5, 2), (1, 3, 1)]) # calcula o determinante usando apenas NumPy det = np.linalg.det(m) # mostramos o resultado print("O determinante da matriz é: %f" % det) if __name__== "__main__": main() Veja que usei a mesma matriz e, usando apenas o método linalg.det() nós obtemos o mesmo resultado. |
Python ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas |
Como calcular o cosseno de um ângulo em Python usando a função cos() do módulo Math - Calculadora de cosseno em PythonQuantidade de visualizações: 2461 vezes |
Como calcular o cosseno de um ângulo em Python usando a função cos() do módulo Math - Calculadora de cosseno em Python Em geral, quando falamos de cosseno, estamos falando do triângulo retângulo de Pitágoras (Teorema de Pitágoras). A verdade é que podemos usar a função cosseno disponível nas linguagens de programação para calcular o cosseno de qualquer número, mesmo nossas aplicações não tendo nenhuma relação com trigonometria. No entanto, é sempre importante entender o que é a função cosseno. Veja a seguinte imagem: Veja que temos um triângulo retângulo com as medidas já calculadas para a hipotenusa e os dois catetos, assim como os ângulos entre eles. Assim, o cosseno é a razão entre o cateto adjascente e a hipotenusa, ou seja, o cateto adjascente dividido pela hipotenusa. Veja a fórmula: \[\text{Cosseno} = \frac{\text{Cateto adjascente}}{\text{Hipotenusa}} \] Então, se dividirmos 30 por 36.056 (na figura eu arredondei) nós teremos 0.8320, que é a razão entre o cateto adjascente e a hipotenusa (em radianos). Agora, experimente calcular o arco-cosseno de 0.8320. O resultado será 0.5881 (em radianos). Convertendo 0.5881 radianos para graus, nós obtemos 33.69º, que é exatamente o ângulo em graus entre o cateto adjascente e a hipotenusa na figura acima. Pronto! Agora que já sabemos o que é cosseno na trigonometria, vamos entender mais sobre a função cos() da linguagem Python. Esta função, que faz parte do módulo Math, recebe um valor numérico float e retorna um valor float, ou seja, também numérico) entre -1 até 1 (ambos inclusos). Veja: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- # vamos importar o módulo Math import math as math def main(): # vamos calcular o cosseno de três números print("Cosseno de 0 = %f" % math.cos(0)) print("Cosseno de 1 = %f" % math.cos(1)) print("Cosseno de 2 = %f" % math.cos(2)) if __name__== "__main__": main() Ao executar este código Python nós teremos o seguinte resultado: Cosseno de 0 = 1.000000 Cosseno de 1 = 0.540302 Cosseno de 2 = -0.416147 Note que calculamos os cossenos dos valores 0, 1 e 2. Observe como os resultados conferem com a curva da função cosseno mostrada abaixo: |
Python ::: Python para Engenharia ::: Geometria Analítica e Álgebra Linear |
Como somar os elementos da diagonal principal de uma matriz em PythonQuantidade de visualizações: 3550 vezes |
A Matriz quadrada é um tipo especial de matriz que possui o mesmo número de linhas e o mesmo número de colunas, ou seja, dada uma matriz Anxm, ela será uma matriz quadrada se, e somente se, n = m, onde n é o número de linhas e m é o número de colunas. Em geral as matrizes quadradas são chamadas de Matrizes de Ordem n, onde n é o número de linhas e colunas. Dessa forma, uma matriz de ordem 4 é uma matriz que possui 4 linhas e quatro colunas. Toda matriz quadrada possui duas diagonais, e elas são muito exploradas tanto na matemática quanto na construção de algorítmos. Essas duas diagonais são chamadas de Diagonal Principal e Diagonal Secundária. A diagonal principal de uma matriz quadrada une o seu canto superior esquerdo ao canto inferior direito. Veja: Nesta dica veremos como calcular a soma dos valores dos elementos da diagonal principal de uma matriz usando Python. Para isso, só precisamos manter em mente que a diagonal principal de uma matriz A é a coleção das entradas Aij em que i é igual a j. Assim, tudo que temos a fazer é converter essa regra para código Python. Veja um trecho de código Python completo no qual pedimos para o usuário informar os elementos da matriz e em seguida mostramos a soma dos elementos da diagonal superior: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- def main(): # vamos declarar e construir uma matriz de três linhas # e três colunas linhas, colunas = (3, 3) matriz = [[0 for x in range(linhas)] for y in range(colunas)] soma_diagonal = 0 # guarda a soma dos elementos na diagonal # principal # vamos ler os elementos da matriz for i in range(len(matriz)): for j in range(len(matriz[i])): matriz[i][j] = int(input("Informe o valor para a linha " + str(i) + " e coluna " + str(j) + ": ")) print() for i in range(len(matriz)): for j in range(len(matriz[i])): print(matriz[i][j], end=' ') print() # vamos calcular a soma dos elementos da diagonal # principal for i in range(len(matriz)): for j in range(len(matriz[i])): if i == j: soma_diagonal = soma_diagonal + matriz[i][j] # finalmente mostramos a soma da diagonal principal print("\nA soma dos elementos da diagonal principal é: %d" % soma_diagonal) if __name__== "__main__": main() Ao executar este código Python nós teremos o seguinte resultado: Informe o valor para a linha 0 e coluna 0: 3 Informe o valor para a linha 0 e coluna 1: 7 Informe o valor para a linha 0 e coluna 2: 9 Informe o valor para a linha 1 e coluna 0: 2 Informe o valor para a linha 1 e coluna 1: 4 Informe o valor para a linha 1 e coluna 2: 1 Informe o valor para a linha 2 e coluna 0: 5 Informe o valor para a linha 2 e coluna 1: 6 Informe o valor para a linha 2 e coluna 2: 8 3 7 9 2 4 1 5 6 8 A soma dos elementos da diagonal principal é: 15 |
Desafios, Exercícios e Algoritmos Resolvidos de Python |
Veja mais Dicas e truques de Python |
Dicas e truques de outras linguagens |
Laravel - Como criar um CRUD completo em Laravel 8 - CRUD em Laravel usando PHP e MySQL (MariaDB) - Parte 1 MySQL - Como formatar campos DATE, TIME, DATETIME e TIMESTAMP usando a função DATE_FORMAT() do MySQL |
Códigos Fonte |
Software de Gestão Financeira com código fonte em PHP, MySQL, Bootstrap, jQuery - Inclui cadastro de clientes, fornecedores e ticket de atendimento Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais |
Controle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidades Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais |
Linguagens Mais Populares |
1º lugar: Java |