Você está aqui: Python ::: Tkinter GUI Toolkit ::: Formulários e Janelas

Como criar uma aplicação de tela cheia usando Tkinter Python

Quantidade de visualizações: 1098 vezes
Nesta dica mostrarei como podemos exibir em tela cheia a janela principal de uma aplicação Tkinter Python. Para isso nós só precisamos efetuar uma chamada à função attributes('-fullscreen', True) da classe Tk.

Veja o código completo para uma aplicação Tkinter Python que exibe a janela principal em tela cheia. Lembre-se de fechá-la usando "Alt + F4".

Eis a listagem:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# vamos importar o módulo Tkinter
from tkinter import *
from tkinter.ttk import *

# método principal
def main():
  # cria a janela principal da aplicação
  janela_principal = Tk()
  
  # define as dimensões da janela
  janela_principal.geometry('300x250')
 
  # vamos definir o título da janela
  janela_principal.title("Cadastro de Clientes") 
 
  # vamos colocar a janela em tela cheia
  janela_principal.attributes('-fullscreen',True) 

  # entramos no loop de eventos 
  janela_principal.mainloop()

if __name__== "__main__":
  main()


Link para compartilhar na Internet ou com seus amigos:

Python ::: Python para Engenharia ::: Engenharia Civil - Cálculo Estrutural

Como calcular o Momento Fletor Mínimo e a Excentricidade Mínima de 1ª Ordem de um pilar em Python - Python para Engenharia Civil e Cálculo Estrutural

Quantidade de visualizações: 215 vezes


O cálculo e dimensionamento de pilares, sejam pilares de canto, extremidade ou intermediários, sempre seguem alguns passos cujas ordens são muito importantes, pois os dados de entrada de um passo podem vir de um ou mais passos anteriores.

Em dicas anteriores do uso da linguagem Python no cálculo de pilares eu mostrei como calcular os esforços solicitantes majorados em pilares e também como calcular o índice de esbeltez de um pilar nas direções x e y.

Nesta dica mostrarei como calcular o Momento Fletor Mínimo e a Excentricidade Mínima de 1ª Ordem de um pilar. Estes dados são muito importantes para a aplicação das fórmulas que embasam a área de aço a ser usada no pilar. Note que a Excentricidade Mínima de 1ª Ordem pode ser desprezada no caso de pilares intermediários (também chamados pilares de centro).

O Momento Fletor Mínimo é o momento mínimo que deve ser considerado, mesmo em pilares nos quais a carga está centrada, e é calculado por meio da seguinte fórmula:

\[M_\text{1d,min} = Nd \cdot (1,5 + (0,03 \cdot h) \]

Onde:

M1d,min é o momento fletor mínimo na direção x ou y em kN.cm.

Nd são os esforços solicitantes majorados em kN.

h é a dimensão do pilar na direção considerada (x ou y) em cm.

A Excentricidade Mínima de 1ª Ordem do pilar pode ser calculada por meio da fórmula:

\[e_\text{1,min} = \frac{M_\text{1d,min}}{Nd} \]

Onde:

e1,min é excentricidade mínima de 1ª ordem na direção escolhida.

Nd são os esforços solicitantes majorados em kN.

Note que, a exemplo do momento fletor mínimo, a excentricidade mínima de 1ª ordem também deve ser calculada nas direções x e y do pilar.

Vamos ao código Python agora? Veja que o código pede para o usuário informar as dimensões do pilar nas direções x e y em centímetros, a carga total que chega ao pilar em kN e mostra o momento fletor mínimo e a excentricidade mínima de 1ª ordem no pilar, tanto na direção x quanto na direção y:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# método principal
def main():
  # vamos pedir as dimensões do pilar
  hx = float(input("Informe a dimensão do pilar na direção x (em cm): "))
  hy = float(input("Informe a dimensão do pilar na direção y (em cm): "))

  # vamos pedir a carga total no pilar em kN
  Nk = float(input("Informe a carga total no pilar (em kN): "))

  # vamos obter o menor lado do pilar (menor dimensão da seção transversal)
  if (hx < hy):
    b = hx
  else:
    b = hy
   
  # agora vamos calcular a área do pilar em centímetros quadrados
  area = hx * hy
 
  # a área está de acordo com a norma NBR 6118 (ABNT, 2014)
  if (area < 360):
    print("A área do pilar não pode ser inferior a 360cm2")
    return

  # vamos calcular a força normal de projeto Nd
  yn = 1.95 - (0.05 * b) # de acordo com a norma NBR 6118 (ABNT, 2014) Tabela 13.1
  yf = 1.4 # regra geral para concreto armado
  Nd = yn * yf * Nk

  # e agora vamos calcular o momento fletor mínimo na direção x do pilar
  M1d_min_x = Nd * (1.5 + (0.03 * hx))

  # e agora vamos calcular o momento fletor mínimo na direção y do pilar
  M1d_min_y = Nd * (1.5 + (0.03 * hy))

  # agora vamos calcular a excentricidade mínima de 1ª ordem na direção x do pilar
  e1x_min = M1d_min_x / Nd

  # e finalmente a excentricidade mínima de 1ª ordem na direção y do pilar
  e1y_min = M1d_min_y / Nd

  # e mostramos os resultados
  print("\nO momento fletor mínimo na direção x é: {0} kN.cm".format(
    round(M1d_min_x, 2)))
  print("O momento fletor mínimo na direção y é: {0} kN.cm".format(
    round(M1d_min_y, 2)))
  print("A excentricidade mínima de 1ª ordem na direção x é: {0} cm".format(
    round(e1x_min, 2)))
  print("A excentricidade mínima de 1ª ordem na direção y é: {0} cm".format(
    round(e1y_min, 2)))

if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

Informe a dimensão do pilar na direção x (em cm): 40
Informe a dimensão do pilar na direção y (em cm): 19
Informe a carga total no pilar (em kN): 841.35

O momento fletor mínimo na direção x é: 3180.3 kN.cm
O momento fletor mínimo na direção y é: 2438.23 kN.cm
A excentricidade mínima de 1ª ordem na direção x é: 2.7 cm
A excentricidade mínima de 1ª ordem na direção y é: 2.07 cm


Python ::: Python para Engenharia ::: Geometria Analítica e Álgebra Linear

Python para Engenharia - Como multiplicar um vetor por um escalar usando Python e NumPy

Quantidade de visualizações: 3334 vezes
Esta dica de Python e NumPy é direcionada, principalmente, aos estudantes de Engenharia, que se deparam, logo no início do curso, com o estudo da Geometria Analítica e gostariam de entender melhor a multiplicação de vetores por um escalar. Lembre-se de que um escalar é um valor único, enquanto vetores e matrizes são estruturas que guardam vários valores ao mesmo tempo.

Nosso primeiro exemplo será feito em cima de um vetor no R3, ou seja, no espaço, com os seguintes valores: [3, -5, 4]. O escalar usado será o valor 2, ou seja, temos que multiplicar cada valor no vetor pelo valor 2 e, dessa forma, obtermos um novo vetor, também no R3. Vetores no R3 possuem valores para x, y e z (três dimensões), enquanto vetores no R2 possuem apenas o x e y.

Veja como a linguagem Python facilita a operação da multiplicação de um vetor R3 por um escalar:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# importamos a bibliteca NumPy
import numpy as np
 
def main():
  # declara e cria o vetor
  vetor = np.array([3, -5, 4])
   
  # agora vamos multiplicar este vetor pelo escalar 2
  escalar = 2
  novoVetor = vetor * escalar
 
  # vamos exibir o resultado
  print("Vetor inicial: ", vetor)
  print("Valor do escalar: ", escalar)
  print("Novo vetor: ", novoVetor)
 
if __name__== "__main__":
  main()

Este código Python vai gerar o seguinte resultado:

Vetor inicial: [3 -5 4]
Valor do escalar: 2
Novo vetor: [6 -10 8]

Agora, saindo da Geometria Analítica e indo para a Álgebra Linear, veja como podemos efetuar a mesma operação em uma matriz de 2 linhas e 3 colunas (recorde que, em Python, uma matriz nada mais é do que um vetor de vetores, ou seja, cada elemento do vetor contém outro vetor):

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# importamos a bibliteca NumPy
import numpy as np
 
def main():
  # declara e cria a matriz
  matriz = np.array([(4, 12, 50), (5, 3, 1), (11, 9, 7)])
   
  # agora vamos multiplicar esta matriz pelo escalar 2
  escalar = 2
  novaMatriz = matriz * escalar
 
  # vamos exibir o resultado
  print("Matriz inicial: ", matriz)
  print("Valor do escalar: ", escalar)
  print("Nova matriz: ", novaMatriz)
 
if __name__== "__main__":
  main()

Ao executarmos este código Python nós teremos o seguinte resultado:

Matriz inicial: [[4 12 50]
[5 3 1]
[11 9 7]]
Valor do escalar: 2
Nova matriz: [[8 24 100]
[10 6 2]
[22 18 14]]


Python ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas

Como calcular o arco cosseno de um número em Python usando o método acos() do módulo math

Quantidade de visualizações: 3332 vezes
O arco cosseno, (também chamado de cosseno inverso) pode ser representado por cos-1 x, arccos x ou acos x. Esta função é a inversa do cosseno, ou seja, se o cosseno é a relação entre o cateto adjacente ao ângulo e a hipotenusa, o arco cosseno parte desta relação para encontrar o valor do ângulo.

Em Python, o arco cosseno de um número pode ser obtido por meio do método acos() da classe Math. Este método recebe um valor double e retorna também um double, na faixa 0 <= x <= PI, onde PI vale 3.1416.

Veja um código Python completo no qual informamos um número e em seguida calculamos o seu arco-cosseno:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# vamos importar o módulo Math
import math as math

def main():
  numero = 0.5
  print("O arco cosseno de %f é %f" % (numero, math.acos(numero)))
  
if __name__== "__main__":
  main()

Ao executar este código nós teremos o seguinte resultado:

O arco cosseno de 0.500000 é 1.047198

Não se esqueça de que as funções trigonométricas são usadas para modelar o movimento das ondas e fenômenos periódicos, como padrões sazonais. Elas formam a base para análises avançadas em engenharia elétrica, processamento digital de imagem, radiografia, termodinâmica, telecomunicações e muitos outros campos da ciência e da tecnologia.


Desafios, Exercícios e Algoritmos Resolvidos de Python

Veja mais Dicas e truques de Python

Dicas e truques de outras linguagens

Códigos Fonte

Programa de Gestão Financeira Controle de Contas a Pagar e a Receber com Cadastro de Clientes e FornecedoresSoftware de Gestão Financeira com código fonte em PHP, MySQL, Bootstrap, jQuery - Inclui cadastro de clientes, fornecedores e ticket de atendimento
Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais
Controle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidadesControle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidades
Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 23 usuários muito felizes estudando em nosso site.