Você está aqui: Python ::: Dicas & Truques ::: Matemática e Estatística

Como resolver uma equação do segundo grau em Python - Como calcular Bhaskara em Python

Quantidade de visualizações: 2362 vezes
Como resolver uma equação do 2º grau usando Python

Nesta dica mostrarei como encontrar as raízes de uma equação quadrática, ou seja, uma equação do 2º usando a linguagem Python.

Definimos como equação do 2º grau ou equações quadráticas qualquer equação do tipo ax² + bx + c = 0 em que a, b e c são números reais e a ≠ 0. Ela recebe esse nome porque, no primeiro membro da igualdade, há um polinômio de grau dois com uma única incógnita.

Note que, dos coeficientes a, b e c, somente o a é diferente de zero, pois, caso ele fosse igual a zero, o termo ax² seria igual a zero, logo a equação se tornaria uma equação do primeiro grau: bx + c = 0.

Independentemente da ordem da equação, o coeficiente a sempre acompanha o termo x², o coeficiente b sempre acompanha o termo x, e o coeficiente c é sempre o termo independente.

Como resolver uma equação do 2º grau

Conhecemos como soluções ou raízes da equação ax² + bx + c = 0 os valores de x que fazem com que essa equação seja verdadeira. Uma equação do 2º grau pode ter no máximo dois números reais que sejam raízes dela. Para resolver equações do 2º grau completas, existem dois métodos mais comuns:

a) Fórmula de Bhaskara;
b) Soma e produto.

O primeiro método é bastante mecânico, o que faz com que muitos o prefiram. Já para utilizar o segundo, é necessário o conhecimento de múltiplos e divisores. Além disso, quando as soluções da equação são números quebrados, soma e produto não é uma alternativa boa.

Como resolver uma equação do 2º grau usando Bhaskara

Como nosso código Python vai resolver a equação quadrática usando a Fórmula de Bhaskara, o primeiro passo é encontrar o determinante. Veja:

\[\Delta =b^2-4ac\]

Nem sempre a equação possui solução real. O valor do determinante é que nos indica isso, existindo três possibilidades:

a) Se determinante > 0, então a equação possui duas soluções reais.
b) Se determinante = 0, então a equação possui uma única solução real.
c) Se determinante < 0, então a equação não possui solução real.

Encontrado o determinante, só precisamos substituir os valores, incluindo o determinante, na Fórmula de Bhaskara:

\[x = \dfrac{- b\pm\sqrt{b^2- 4ac}}{2a}\]

Vamos agora ao código Python. Nossa aplicação vai pedir para o usuário informar os valores dos três coeficientes a, b e c e, em seguida, vai apresentar as raizes da equação:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# importamos a bibliteca Math
import math

def main():
  # vamos pedir para o usuário informar os valores dos coeficientes
  a = float(input("Valor do coeficiente a: "))
  b = float(input("Valor do coeficiente b: "))
  c = float(input("Valor do coeficiente c: "))
  # vamos calcular o discriminante
  discriminante = (b * b) - (4 * a * c)
    
  # a equação possui duas soluções reais?
  if(discriminante > 0):
    raiz1 = (-b + math.sqrt(discriminante)) / (2 * a)
    raiz2 = (-b - math.sqrt(discriminante)) / (2 * a)
    print("Existem duas raizes: x1 = {0} e x2 = {1}".format(raiz1, raiz2))
  # a equação possui uma única solução real?
  elif(discriminante == 0):
    raiz1 = raiz2 = -b / (2 * a)
    print("Existem duas raizes iguais: x1 = {0} e x2 = {1}".format(raiz1, raiz2))  	
  # a equação não possui solução real?
  elif(discriminante < 0):
    raiz1 = raiz2 = -b / (2 * a)
    imaginaria = math.sqrt(-discriminante) / (2 * a)
    print("Existem duas raízes complexas: x1 = {0} + {1} e x2 = {2} - {3}".format( 
      raiz1, imaginaria, raiz2, imaginaria))

if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

Valor do coeficiente a: 1
Valor do coeficiente b: 2
Valor do coeficiente c: -3
Existem duas raizes: x1 = 1.0 e x2 = -3.0

Link para compartilhar na Internet ou com seus amigos:

Python ::: Dicas & Truques ::: Strings e Caracteres

Apostila Python - Como verificar se uma string contém apenas números (dígitos)

Quantidade de visualizações: 18825 vezes
Este exemplo mostra como como usar a função isdigit() para verificar se uma string contém apenas números. Se alguma letra ou caractere especial estiver contido, a função retorna False.

Veja o código Python completo:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

def main():
  string = "49380"
 
  if string.isdigit():
    print("A string contém apenas números")
  else:
    print("A string não contém somente números")
 
if __name__== "__main__":
  main()

Ao executarmos este código nós teremos o seguinte resultado:

A string contém apenas números


Python ::: Desafios e Lista de Exercícios Resolvidos ::: Arrays e Matrix (Vetores e Matrizes)

Exercícios Resolvidos de Python - Escreva um programa Python para mover todos os zeros para o final do vetor, sem alterar a ordem dos elementos já presentes no array

Quantidade de visualizações: 1742 vezes
Pergunta/Tarefa:

Dado o seguinte vetor de inteiros:

# vamos declarar e construir um vetor de 8 inteiros
valores = [0, 3, 0, 5, 7, 4, 0, 9]
Escreva um programa Python para mover todos os zeros para o final do vetor, ou seja, para a direita, sem alterar a ordem dos elementos diferentes de zero já presentes no array e sem criar um vetor adicional ou temporário.

Sua saída deverá ser parecida com:

Vetor na ordem original:

0   3   0   5   7   4   0   9   

Vetor com os zeros deslocados para o final:

3   5   7   4   9   0   0   0
Resposta/Solução:

Veja a resolução comentada deste exercício usando Python:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# método principal
def main():
  # vamos declarar e construir um vetor de 8 inteiros
  valores = [0, 3, 0, 5, 7, 4, 0, 9]
    
  # vamos mostrar o vetor na ordem original
  print("Vetor na ordem original:\n")
  for i in range(len(valores)):
    print("%d   " % valores[i], end="")
    
  # vamos inicializar j como 0 para que ele aponte para
  # o primeiro elemento do vetor
  j = 0
    
  # agora o laço for percorre todos os elementos do vetor,
  # incrementanto a variável i e deixando o j em 0
  for i in range(len(valores)):
    # encontramos um valor que não é 0
    if(valores[i] != 0):
      # fazemos a troca entre os elementos nos índices
      # i e j
      temp = valores[i]
      valores[i] = valores[j]
      valores[j] = temp
      # e avançamos o j para o elemento seguinte
      j = j + 1
    
  # agora mostramos o resultado
  print("\n\nVetor com os zeros deslocados para o final:\n")
  for i in range(len(valores)):
    print("%d   " % valores[i], end="")
    
if __name__== "__main__":
  main()

Não se esqueça: A resolução do exercício deve ser feita sem a criação de um vetor, array ou lista adicional, e os elementos diferentes de zero devem permanecer na mesma ordem que eles estavam antes.


Python ::: Python para Engenharia ::: Geometria Analítica e Álgebra Linear

Como somar os elementos da diagonal principal de uma matriz em Python

Quantidade de visualizações: 3570 vezes
A Matriz quadrada é um tipo especial de matriz que possui o mesmo número de linhas e o mesmo número de colunas, ou seja, dada uma matriz Anxm, ela será uma matriz quadrada se, e somente se, n = m, onde n é o número de linhas e m é o número de colunas.

Em geral as matrizes quadradas são chamadas de Matrizes de Ordem n, onde n é o número de linhas e colunas. Dessa forma, uma matriz de ordem 4 é uma matriz que possui 4 linhas e quatro colunas.

Toda matriz quadrada possui duas diagonais, e elas são muito exploradas tanto na matemática quanto na construção de algorítmos. Essas duas diagonais são chamadas de Diagonal Principal e Diagonal Secundária.

A diagonal principal de uma matriz quadrada une o seu canto superior esquerdo ao canto inferior direito. Veja:



Nesta dica veremos como calcular a soma dos valores dos elementos da diagonal principal de uma matriz usando Python. Para isso, só precisamos manter em mente que a diagonal principal de uma matriz A é a coleção das entradas Aij em que i é igual a j. Assim, tudo que temos a fazer é converter essa regra para código Python.

Veja um trecho de código Python completo no qual pedimos para o usuário informar os elementos da matriz e em seguida mostramos a soma dos elementos da diagonal superior:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

def main():
  # vamos declarar e construir uma matriz de três linhas
  # e três colunas
  linhas, colunas = (3, 3)
  matriz = [[0 for x in range(linhas)] for y in range(colunas)]
  soma_diagonal = 0 # guarda a soma dos elementos na diagonal
  # principal

  # vamos ler os elementos da matriz
  for i in range(len(matriz)):
    for j in range(len(matriz[i])):
      matriz[i][j] = int(input("Informe o valor para a linha " + str(i) 
        + " e coluna " + str(j) + ": "))

  print()
  for i in range(len(matriz)):
    for j in range(len(matriz[i])):
      print(matriz[i][j], end='  ')
    print()

  # vamos calcular a soma dos elementos da diagonal   
  # principal
  for i in range(len(matriz)):
    for j in range(len(matriz[i])):
      if i == j:
        soma_diagonal = soma_diagonal + matriz[i][j]

  # finalmente mostramos a soma da diagonal principal
  print("\nA soma dos elementos da diagonal principal é: %d" %
    soma_diagonal)  

if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

Informe o valor para a linha 0 e coluna 0: 3
Informe o valor para a linha 0 e coluna 1: 7
Informe o valor para a linha 0 e coluna 2: 9
Informe o valor para a linha 1 e coluna 0: 2
Informe o valor para a linha 1 e coluna 1: 4
Informe o valor para a linha 1 e coluna 2: 1
Informe o valor para a linha 2 e coluna 0: 5
Informe o valor para a linha 2 e coluna 1: 6
Informe o valor para a linha 2 e coluna 2: 8

3  7  9  
2  4  1  
5  6  8  

A soma dos elementos da diagonal principal é: 15



Desafios, Exercícios e Algoritmos Resolvidos de Python

Veja mais Dicas e truques de Python

Dicas e truques de outras linguagens

Códigos Fonte

Programa de Gestão Financeira Controle de Contas a Pagar e a Receber com Cadastro de Clientes e FornecedoresSoftware de Gestão Financeira com código fonte em PHP, MySQL, Bootstrap, jQuery - Inclui cadastro de clientes, fornecedores e ticket de atendimento
Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais
Controle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidadesControle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidades
Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 56 usuários muito felizes estudando em nosso site.