Você está aqui: VB.NET ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas |
Como calcular o coeficiente angular de uma reta em VB.NET dados dois pontos no plano cartesianoQuantidade de visualizações: 1086 vezes |
O Coeficiente Angular de uma reta é a variação, na vertical, ou seja, no eixo y, pela variação horizontal, no eixo x. Sim, isso mesmo. O coeficiente angular de uma reta tem tudo a ver com a derivada, que nada mais é que a taxa de variação de y em relação a x. Vamos começar analisando o seguinte gráfico, no qual temos dois pontos distintos no plano cartesiano: ![]() Veja que o segmento de reta AB passa pelos pontos A (x=3, y=6) e B (x=9, y=10). Dessa forma, a fórmula para obtenção do coeficiente angular m dessa reta é: \[\ \text{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tg \theta \] Note que __$\Delta y__$ e __$\Delta x__$ são as variações dos valores no eixo das abscissas e no eixo das ordenadas. No triângulo retângulo que desenhei acima, a variação __$\Delta y__$ se refere ao comprimento do cateto oposto e a variação __$\Delta y__$ se refere ao comprimento do cateto adjascente. Veja agora o trecho de código na linguagem VB.NET que solicita as coordenadas x e y dos dois pontos, efetua o cálculo e mostra o coeficiente angular m da reta que passa pelos dois pontos: Imports System Module Program Sub Main(args As String()) ' x e y do primeiro ponto Console.Write("Informe a coordenada x do primeiro ponto: ") Dim x1 As Double = Double.Parse(Console.ReadLine()) Console.Write("Informe a coordenada y do primeiro ponto: ") Dim y1 As Double = Double.Parse(Console.ReadLine()) ' x e y do segundo ponto Console.Write("Informe a coordenada x do segundo ponto: ") Dim x2 As Double = Double.Parse(Console.ReadLine()) Console.Write("Informe a coordenada y do segundo ponto: ") Dim y2 As Double = Double.Parse(Console.ReadLine()) Ao executar este código em linguagem VB.NET nós teremos o seguinte resultado: O coeficiente angular é: 0,6666666666666666 Veja agora como podemos calcular o coeficiente angular da reta que passa pelos dois pontos usando o Teorema de Pitágoras. Note que agora nós estamos tirando proveito da tangente do ângulo Theta (__$\theta__$), também chamado de ângulo Alfa ou Alpha (__$\alpha__$): Imports System Module Program Sub Main(args As String()) ' x e y do primeiro ponto Console.Write("Informe a coordenada x do primeiro ponto: ") Dim x1 As Double = Double.Parse(Console.ReadLine()) Console.Write("Informe a coordenada y do primeiro ponto: ") Dim y1 As Double = Double.Parse(Console.ReadLine()) ' x e y do segundo ponto Console.Write("Informe a coordenada x do segundo ponto: ") Dim x2 As Double = Double.Parse(Console.ReadLine()) Console.Write("Informe a coordenada y do segundo ponto: ") Dim y2 As Double = Double.Parse(Console.ReadLine()) ' vamos obter o comprimento do cateto oposto Dim cateto_oposto As Double = y2 - y1 ' e agora o cateto adjascente Dim cateto_adjascente As Double = x2 - x1 Ao executar este código você verá que o resultado é o mesmo. No entanto, fique atento às propriedades do coeficiente angular da reta: 1) O coeficiente angular é positivo quando a reta for crescente, ou seja, m > 0; 2) O coeficiente angular é negativo quando a reta for decrescente, ou seja, m < 0; 3) Se a reta estiver na horizontal, ou seja, paralela ao eixo x, seu coeficiente angular é zero (0). 4) Se a reta estiver na vertical, ou seja, paralela ao eixo y, o coeficiente angular não existe. |
![]() |
Desafios, Exercícios e Algoritmos Resolvidos de VB.NET |
Veja mais Dicas e truques de VB.NET |
Dicas e truques de outras linguagens |
Java - Como quebrar (separar) uma string em palavras usando um objeto da classe StringTokenizer do Java Portugol - Exercício Resolvido de Portugol - Um programa que lê três números inteiros e mostra o maior |
E-Books em PDF |
||||
|
||||
|
||||
Linguagens Mais Populares |
||||
1º lugar: Java |