Ofereço ajuda em Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD
+55 (062) 98553-6711
Ofereço ajuda em PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO
+55 (062) 98243-1195

Você está aqui: Delphi ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas

Como calcular o coeficiente angular de uma reta em Delphi dados dois pontos no plano cartesiano

Quantidade de visualizações: 1327 vezes
O Coeficiente Angular de uma reta é a variação, na vertical, ou seja, no eixo y, pela variação horizontal, no eixo x. Sim, isso mesmo. O coeficiente angular de uma reta tem tudo a ver com a derivada, que nada mais é que a taxa de variação de y em relação a x.

Vamos começar analisando o seguinte gráfico, no qual temos dois pontos distintos no plano cartesiano:



Veja que o segmento de reta AB passa pelos pontos A (x=3, y=6) e B (x=9, y=10). Dessa forma, a fórmula para obtenção do coeficiente angular m dessa reta é:

\[\ \text{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tg \theta \]

Note que __$\Delta y__$ e __$\Delta x__$ são as variações dos valores no eixo das abscissas e no eixo das ordenadas. No triângulo retângulo que desenhei acima, a variação __$\Delta y__$ se refere ao comprimento do cateto oposto e a variação __$\Delta y__$ se refere ao comprimento do cateto adjascente.

Veja agora o trecho de código na linguagem Delphi que solicita as coordenadas x e y dos dois pontos, efetua o cálculo e mostra o coeficiente angular m da reta que passa pelos dois pontos:

----------------------------------------------------------------------
Precisa de ajuda? Chama no WhatsApp +55 (62) 98553-6711 (Osmar)

Este código foi útil? Paga um cafezinho pra mim :-(
PIX: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

procedure TForm4.Button2Click(Sender: TObject);
var
  x1, y1, x2, y2, m: Double;
begin
  // x e y do primeiro ponto
  x1 := 3;
  y1 := 6;

  // x e y do segundo ponto
  x2 := 9;
  y2 := 10;

  // agora vamos calcular o coeficiente angular
  m := (y2 - y1) / (x2 - x1);

  // e mostramos o resultado
  Memo1.Lines.Add('O coeficiente angular é: ' +
    FloatToStr(m));
end;

Ao executar este código em linguagem Delphi nós teremos o seguinte resultado:

O coeficiente angular é: 0,666666666666667

Veja agora como podemos calcular o coeficiente angular da reta que passa pelos dois pontos usando o Teorema de Pitágoras. Note que agora nós estamos tirando proveito da tangente do ângulo Theta (__$\theta__$), também chamado de ângulo Alfa ou Alpha (__$\alpha__$):

----------------------------------------------------------------------
Precisa de ajuda? Chama no WhatsApp +55 (62) 98553-6711 (Osmar)

Este código foi útil? Paga um cafezinho pra mim :-(
PIX: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

procedure TForm4.Button2Click(Sender: TObject);
var
  x1, y1, x2, y2, tangente: Double;
  cateto_oposto, cateto_adjascente, tetha: Double;
begin
  // incluir a unit Math

  // x e y do primeiro ponto
  x1 := 3;
  y1 := 6;

  // x e y do segundo ponto
  x2 := 9;
  y2 := 10;

  // vamos obter o comprimento do cateto oposto
  cateto_oposto := y2 - y1;
  // e agora o cateto adjascente
  cateto_adjascente := x2 - x1;
  // vamos obter o ângulo tetha, ou seja, a inclinação da hipetunesa
  // (em radianos, não se esqueça)
  tetha := ArcTan2(cateto_oposto, cateto_adjascente);
  // e finalmente usamos a tangente desse ângulo para calcular
  // o coeficiente angular
  tangente := Tan(tetha);

  // e mostramos o resultado
  Memo1.Lines.Add('O coeficiente angular é: ' +
    FloatToStr(tangente));
end;

Ao executar este código você verá que o resultado é o mesmo. No entanto, fique atento às propriedades do coeficiente angular da reta:

1) O coeficiente angular é positivo quando a reta for crescente, ou seja, m > 0;

2) O coeficiente angular é negativo quando a reta for decrescente, ou seja, m < 0;

3) Se a reta estiver na horizontal, ou seja, paralela ao eixo x, seu coeficiente angular é zero (0).

4) Se a reta estiver na vertical, ou seja, paralela ao eixo y, o coeficiente angular não existe.

Link para compartilhar na Internet ou com seus amigos:

Desafios, Exercícios e Algoritmos Resolvidos de Delphi

Veja mais Dicas e truques de Delphi

Dicas e truques de outras linguagens

E-Books em PDF

E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 30 usuários muito felizes estudando em nosso site.