Você está aqui: GNU Octave ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas

Como calcular o seno de um número ou ângulo em GNU Octave usando a função sin()

Quantidade de visualizações: 1886 vezes
Em geral, quando falamos de seno, estamos falando do triângulo retângulo de Pitágoras (Teorema de Pitágoras). A verdade é que podemos usar a função seno disponível nas linguagens de programação para calcular o seno de qualquer número, mesmo nossas aplicações não tendo nenhuma relação com trigonometria.

No entanto, é sempre importante entender o que é a função seno. Veja a seguinte imagem:



Veja que temos um triângulo retângulo com as medidas já calculadas para a hipotenusa e os dois catetos, assim como os ângulos entre eles.

Assim, o seno é a razão entre o cateto oposto (oposto ao ângulo theta) e a hipotenusa, ou seja, o cateto oposto dividido pela hipotenusa. Veja a fórmula:

\[\text{Seno} = \frac{\text{Cateto oposto}}{\text{Hipotenusa}} \]

Então, se dividirmos 20 por 36.056 (na figura eu arredondei) nós teremos 0.5547, que é a razão entre o cateto oposto e a hipotenusa (em radianos).

Agora, experimente calcular o arco-cosseno de 0.5547. O resultado será 0.9828 (em radianos). Convertendo 0.9828 radianos para graus, nós obtemos 56.31º, que é exatamente o ângulo em graus entre o cateto oposto e a hipotenusa na figura acima.

Pronto! Agora que já sabemos o que é seno na trigonometria, vamos entender mais sobre a função sin() da linguagem GNU Octave. Esta função, que já vem embutido na ferramenta, recebe um valor numérico e retorna um valor, também numérico) entre -1 até 1 (ambos inclusos). Veja:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

>> sin(0) [ENTER]
ans = 0
>> sin(1) [ENTER]
ans = 0.8415
>> sin(2) [ENTER]
ans = 0.9093
>>

Note que calculamos os senos dos valores 0, 1 e 2. Observe como os resultados conferem com a curva da função seno mostrada abaixo:



Link para compartilhar na Internet ou com seus amigos:

GNU Octave ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas

Como calcular o coeficiente angular de uma reta em GNU Octave dados dois pontos no plano cartesiano

Quantidade de visualizações: 1422 vezes
O Coeficiente Angular de uma reta é a variação, na vertical, ou seja, no eixo y, pela variação horizontal, no eixo x. Sim, isso mesmo. O coeficiente angular de uma reta tem tudo a ver com a derivada, que nada mais é que a taxa de variação de y em relação a x.

Vamos começar analisando o seguinte gráfico, no qual temos dois pontos distintos no plano cartesiano:



Veja que o segmento de reta AB passa pelos pontos A (x=3, y=6) e B (x=9, y=10). Dessa forma, a fórmula para obtenção do coeficiente angular m dessa reta é:

\[\ \text{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tg \theta \]

Note que __$\Delta y__$ e __$\Delta x__$ são as variações dos valores no eixo das abscissas e no eixo das ordenadas. No triângulo retângulo que desenhei acima, a variação __$\Delta y__$ se refere ao comprimento do cateto oposto e a variação __$\Delta y__$ se refere ao comprimento do cateto adjascente.

Veja agora o trecho de código na linguagem GNU Octave (script GNU Octave) que solicita as coordenadas x e y dos dois pontos, efetua o cálculo e mostra o coeficiente angular m da reta que passa pelos dois pontos:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# x e y do primeiro ponto
x1 = input("Coordenada x do primeiro ponto: ")
y1 = input("Coordenada y do primeiro ponto: ")

# x e y do segundo ponto
x2 = input("Coordenada x do segundo ponto: ")
y2 = input("Coordenada y do segundo ponto: ")

# agora vamos calcular o coeficiente angular
m = (y2 - y1) / (x2 - x1)

# mostramos o resultado
fprintf("O coeficiente angular é: %f\n\n", m)

Ao executar este código em linguagem GNU Octave nós teremos o seguinte resultado:

Coordenada x do primeiro ponto: 3
x1 = 3
Coordenada y do primeiro ponto: 6
y1 = 6
Coordenada x do segundo ponto: 9
x2 = 9
Coordenada y do segundo ponto: 10
y2 = 10
m = 0.6667
O coeficiente angular é: 0.666667

Veja agora como podemos calcular o coeficiente angular da reta que passa pelos dois pontos usando o Teorema de Pitágoras. Note que agora nós estamos tirando proveito da tangente do ângulo Theta (__$\theta__$), também chamado de ângulo Alfa ou Alpha (__$\alpha__$):

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# x e y do primeiro ponto
x1 = input("Coordenada x do primeiro ponto: ")
y1 = input("Coordenada y do primeiro ponto: ")

# x e y do segundo ponto
x2 = input("Coordenada x do segundo ponto: ")
y2 = input("Coordenada y do segundo ponto: ")

# vamos obter o comprimento do cateto oposto
cateto_oposto = y2 - y1
# e agora o cateto adjascente
cateto_adjascente = x2 - x1
# vamos obter o ângulo tetha, ou seja, a inclinação da hipetunesa
# (em radianos, não se esqueça)
tetha = atan2(cateto_oposto, cateto_adjascente)
# e finalmente usamos a tangente desse ângulo para calcular
# o coeficiente angular
tangente = tan(tetha)

# mostramos o resultado
fprintf("O coeficiente angular é: %f\n\n", tangente)

Ao executar este código você verá que o resultado é o mesmo. No entanto, fique atento às propriedades do coeficiente angular da reta:

1) O coeficiente angular é positivo quando a reta for crescente, ou seja, m > 0;

2) O coeficiente angular é negativo quando a reta for decrescente, ou seja, m < 0;

3) Se a reta estiver na horizontal, ou seja, paralela ao eixo x, seu coeficiente angular é zero (0).

4) Se a reta estiver na vertical, ou seja, paralela ao eixo y, o coeficiente angular não existe.


GNU Octave ::: Desafios e Lista de Exercícios Resolvidos ::: Equações Lineares

Exercício Resolvido de Octave - Sistema de Equações Lineares - Como resolver um sistema de equações lineares em Octave

Quantidade de visualizações: 339 vezes
Pergunta/Tarefa:

Este exercício de Octave mostra como resolver uma equação linear.

1) Dado o seguinte sistema de equações lineares:



use o GNU Octave para encontrar os valores das incógnitas x, y e z.

Sua saída deverá ser parecida com:

x =

   6
   2
   7
Resposta/Solução:

Para resolver esse sistema nós temos que definir três matrizes para representarmos as equações lineares no formato de matriz:

Ax = b

onde A, x, e b são matrizes.

Dessa forma, para obter o conjunto de soluções, ou seja, as incógnitas, nós temos que escrever as equações lineares na forma:

x = A \ b

Veja agora o código Octave para a resolução (aqui eu fiz em modo interativo):

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

>> % vamos criar a matriz A [ENTER]
>> A = [4 3 2; 3 7 4; 8 9 5]; [ENTER]
>> % agora vamos criar a matriz b [ENTER]
>> b = [44; 60; 101]; [ENTER]
>> % obtemos o conjunto de solucoes [ENTER]
>> x = A \ b [ENTER]



GNU Octave ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas

Como calcular o cosseno de um ângulo em GNU Octave usando a função cos() - Calculadora de cosseno em Octave

Quantidade de visualizações: 2672 vezes
Em geral, quando falamos de cosseno, estamos falando do triângulo retângulo de Pitágoras (Teorema de Pitágoras). A verdade é que podemos usar a função cosseno disponível nas linguagens de programação para calcular o cosseno de qualquer número, mesmo nossas aplicações não tendo nenhuma relação com trigonometria.

No entanto, é sempre importante entender o que é a função cosseno. Veja a seguinte imagem:



Veja que temos um triângulo retângulo com as medidas já calculadas para a hipotenusa e os dois catetos, assim como os ângulos entre eles.

Assim, o cosseno é a razão entre o cateto adjascente e a hipotenusa, ou seja, o cateto adjascente dividido pela hipotenusa. Veja a fórmula:

\[\text{Cosseno} = \frac{\text{Cateto adjascente}}{\text{Hipotenusa}} \]

Então, se dividirmos 30 por 36.056 (na figura eu arredondei) nós teremos 0.8320, que é a razão entre o cateto adjascente e a hipotenusa (em radianos).

Agora, experimente calcular o arco-cosseno de 0.8320. O resultado será 0.5881 (em radianos). Convertendo 0.5881 radianos para graus, nós obtemos 33.69º, que é exatamente o ângulo em graus entre o cateto adjascente e a hipotenusa na figura acima.

Pronto! Agora que já sabemos o que é cosseno na trigonometria, vamos entender mais sobre a função cos() da linguagem GNU Octave (script do GNU Octave). Esta função, já embutida na linguagem, recebe um valor numérico double e retorna um valor double, ou seja, também numérico) entre -1 até 1 (ambos inclusos). Veja:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# vamos calcular o cosseno de três números
fprintf("Cosseno de 0 = %f\n", cos(0))
fprintf("Cosseno de 1 = %f\n", cos(1))
fprintf("Cosseno de 2 = %f\n", cos(2))

Ao executar este código GNU Octave nós teremos o seguinte resultado:

Cosseno de 0 = 1.000000
Cosseno de 1 = 0.540302
Cosseno de 2 = -0.416147

Note que calculamos os cossenos dos valores 0, 1 e 2. Observe como os resultados conferem com a curva da função cosseno mostrada abaixo:




Veja mais Dicas e truques de GNU Octave

Dicas e truques de outras linguagens

Códigos Fonte

Programa de Gestão Financeira Controle de Contas a Pagar e a Receber com Cadastro de Clientes e FornecedoresSoftware de Gestão Financeira com código fonte em PHP, MySQL, Bootstrap, jQuery - Inclui cadastro de clientes, fornecedores e ticket de atendimento
Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais
Controle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidadesControle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidades
Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 71 usuários muito felizes estudando em nosso site.