Você está aqui: GNU Octave ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas |
Como calcular o seno de um número ou ângulo em GNU Octave usando a função sin()Quantidade de visualizações: 1763 vezes |
Em geral, quando falamos de seno, estamos falando do triângulo retângulo de Pitágoras (Teorema de Pitágoras). A verdade é que podemos usar a função seno disponível nas linguagens de programação para calcular o seno de qualquer número, mesmo nossas aplicações não tendo nenhuma relação com trigonometria. No entanto, é sempre importante entender o que é a função seno. Veja a seguinte imagem: Veja que temos um triângulo retângulo com as medidas já calculadas para a hipotenusa e os dois catetos, assim como os ângulos entre eles. Assim, o seno é a razão entre o cateto oposto (oposto ao ângulo theta) e a hipotenusa, ou seja, o cateto oposto dividido pela hipotenusa. Veja a fórmula: \[\text{Seno} = \frac{\text{Cateto oposto}}{\text{Hipotenusa}} \] Então, se dividirmos 20 por 36.056 (na figura eu arredondei) nós teremos 0.5547, que é a razão entre o cateto oposto e a hipotenusa (em radianos). Agora, experimente calcular o arco-cosseno de 0.5547. O resultado será 0.9828 (em radianos). Convertendo 0.9828 radianos para graus, nós obtemos 56.31º, que é exatamente o ângulo em graus entre o cateto oposto e a hipotenusa na figura acima. Pronto! Agora que já sabemos o que é seno na trigonometria, vamos entender mais sobre a função sin() da linguagem GNU Octave. Esta função, que já vem embutido na ferramenta, recebe um valor numérico e retorna um valor, também numérico) entre -1 até 1 (ambos inclusos). Veja: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- >> sin(0) [ENTER] ans = 0 >> sin(1) [ENTER] ans = 0.8415 >> sin(2) [ENTER] ans = 0.9093 >> Note que calculamos os senos dos valores 0, 1 e 2. Observe como os resultados conferem com a curva da função seno mostrada abaixo: |
Link para compartilhar na Internet ou com seus amigos: |
GNU Octave ::: Dicas & Truques ::: Matemática e Estatística |
Como calcular raiz quadrada usando a função sqrt() do GNU OctaveQuantidade de visualizações: 4523 vezes |
A raiz quadrada de um algarismo é dada por um número positivo n, que ao ser elevado ao quadrado (multiplicado por ele mesmo), se iguala a x. Na área da matemática, a raiz quadrada auxilia na resolução de vários problemas, entre eles as equações de segundo grau e o Teorema de Pitágoras. Relembrando que a raiz quadrada é o inverso da potenciação com expoente dois, temos que: \[\sqrt{9} = 3\] então, pela potenciação: \[3^2 = 9\] Agora veremos como calcular a raiz quadrada usando a função sqrt() do GNU Octave. Se você ainda não o fez, abra o GNU Octave e digite a seguinte expressão na janela de comandos: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- >> raiz = sqrt(9) [ENTER] raiz = 3 >> Agora veja como podemos usar a função sqrt() em um script do GNU Octave: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- valor = input("Informe o valor desejado: "); raiz = sqrt(valor); fprintf("A raiz quadrada do valor informado é %d\n", raiz); Uma saída deste código poderia ser: Informe o valor desejado: 25 A raiz quadrada do valor informado é 5 >> É importante ter em mente que a função sqrt() do GNU Octave retorna um erro caso o valor do radicando for negativo. Veja: Informe o valor desejado: -5 A raiz quadrada do valor informado é error: octave_base_value::int64_scalar_value (): wrong type argument 'complex scalar' >> |
GNU Octave ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas |
Como calcular o cosseno de um ângulo em GNU Octave usando a função cos() - Calculadora de cosseno em OctaveQuantidade de visualizações: 2580 vezes |
Em geral, quando falamos de cosseno, estamos falando do triângulo retângulo de Pitágoras (Teorema de Pitágoras). A verdade é que podemos usar a função cosseno disponível nas linguagens de programação para calcular o cosseno de qualquer número, mesmo nossas aplicações não tendo nenhuma relação com trigonometria. No entanto, é sempre importante entender o que é a função cosseno. Veja a seguinte imagem: Veja que temos um triângulo retângulo com as medidas já calculadas para a hipotenusa e os dois catetos, assim como os ângulos entre eles. Assim, o cosseno é a razão entre o cateto adjascente e a hipotenusa, ou seja, o cateto adjascente dividido pela hipotenusa. Veja a fórmula: \[\text{Cosseno} = \frac{\text{Cateto adjascente}}{\text{Hipotenusa}} \] Então, se dividirmos 30 por 36.056 (na figura eu arredondei) nós teremos 0.8320, que é a razão entre o cateto adjascente e a hipotenusa (em radianos). Agora, experimente calcular o arco-cosseno de 0.8320. O resultado será 0.5881 (em radianos). Convertendo 0.5881 radianos para graus, nós obtemos 33.69º, que é exatamente o ângulo em graus entre o cateto adjascente e a hipotenusa na figura acima. Pronto! Agora que já sabemos o que é cosseno na trigonometria, vamos entender mais sobre a função cos() da linguagem GNU Octave (script do GNU Octave). Esta função, já embutida na linguagem, recebe um valor numérico double e retorna um valor double, ou seja, também numérico) entre -1 até 1 (ambos inclusos). Veja: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- # vamos calcular o cosseno de três números fprintf("Cosseno de 0 = %f\n", cos(0)) fprintf("Cosseno de 1 = %f\n", cos(1)) fprintf("Cosseno de 2 = %f\n", cos(2)) Ao executar este código GNU Octave nós teremos o seguinte resultado: Cosseno de 0 = 1.000000 Cosseno de 1 = 0.540302 Cosseno de 2 = -0.416147 Note que calculamos os cossenos dos valores 0, 1 e 2. Observe como os resultados conferem com a curva da função cosseno mostrada abaixo: |
GNU Octave ::: Desafios e Lista de Exercícios Resolvidos ::: Pesquisa Operacional |
Exercício Resolvido de Octave - Programação Linear - Um fazendeiro decidiu misturar duas rações, a Ração X e a Ração Y. Cada porção de ração dada aos animaisQuantidade de visualizações: 285 vezes |
Pergunta/Tarefa: Este exercício de Octave aborda o uso da função glpk() para resolver um problema de Pesquisa Operacional usando Programação Linear. 1) Um fazendeiro decidiu misturar duas rações, a Ração X e a Ração Y. Cada porção de ração dada aos animais exige 60g de proteína e 30g de gordura. A Ração X possui 15g de proteína e 10g de gordura, e custa R$ 80,00 a unidade. A Ração Y apresenta 20g de proteína e 5g de gordura e custa R$ 50,00 a unidade. Quanto de cada ração deve ser usada para minimizar os custos do fazendeiro? Sua saída deverá ser parecida com: A solução para o problema de minimização é: x = 2.40 y = 1.20 O custo mínimo é: 252.00 Antes de passarmos ao código Octave, vamos fazer a modelagem matemática do problema. O primeiro passo é identificar as variáveis. Assim, vamos chamar de x o número de unidades da Ração X e de y o número de unidades da Ração Y. Veja: x = Número de unidades da Ração X y = Número de unidades da Ração Y E então temos a função custo: custo = 80x + 50y A primeira restrição diz respeito à quantidade de proteína em cada porção de ração. Sabendo que a Ração X apresenta 15g de proteína e a Ração Y apresenta 20g de proteína nós temos: R1: 15x + 20y >= 60 (proteína) A segunda restrição diz respeito à quantidade de gordura em cada porção de ração. Sabendo que a Ração X apresenta 10g de gordura e a Ração Y apresenta 5g de gordura nós temos: R2: 10x + 5y >= 30 (gordura) As restrições R3 e R4 dizem respeito à não negatividade das variáveis de decisão: R3: x >= 0 R4: y >= 0 Veja agora o código Octave completo (pesquisa_operacional.m): ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- # vamos começar definindo a matriz que representa a função de # minimização c = [80.0, 50.0]'; # agora a matriz de restrições A = [15, 20; 10, 5]; b = [60, 30]'; # as restrições de não negatividade e o limite superior lb = [0, 0]'; ub = []; # definimos as restrições como limites inferiores ctype = "LL"; # indicamos que vamos usar variáveis contínuas (não inteiros) vartype = "CC"; # vamos usar minimização, por isso definimos o valor 1. Se fosse # maximização o valor seria -1 s = 1; # definimos os parâmetros adicionais param.msglev = 1; param.itlim = 100; # e chamamos a função glpk() [xmin, fmin, status, extra] = glpk(c, A, b, lb, ub, ctype, vartype, s, param); # mostramos a solução para o problema de minimização printf("A solução para o problema de minimização é:\n\n"); printf("x = %.2f\n", xmin(1)); printf("y = %.2f\n", xmin(2)); # para finalizar vamos mostrar o custo mínimo printf("\nO custo mínimo é: %.2f\n\n", fmin); Ao executar o código você perceberá que, para minimizar os custos do fazendeiro, deverão ser usados na mistura 2,4 unidades da Ração X e 1,2 unidades da Raça Y, a um custo mínimo de R$ 252,00. |
Vamos testar seus conhecimentos em Engenharia Civil - Estruturas de Aço e Madeira |
Perfil em aço As conexões dos perfis de aço contribuem para a projetação das estruturas de uma edificação, sendo responsáveis pela ligação entre pilares e vigas ou entre outros elementos. Elas podem variar, dependendo do tipo de esforço que se pretende resistir com o elemento estrutural. Considerando a figura apresentada a seguir, assinale a alternativa que indica corretamente o tipo de conexão que está sendo utilizado para unir essas peças. A) Conexão de cisalhamento. B) Conexão de momento com pinos. C) Conexão de cisalhamento com solda. D) Conexão de momento com solda. E) Conexão de tensão com solda. Verificar Resposta Estudar Cards Todas as Questões |
Vamos testar seus conhecimentos em Engenharia Civil - Instalações Hidráulicas Prediais |
Dimensionamento de Redes de Distribuição de Água Qual a vazão em marcha e específica para uma cidade com 250.000 habitantes, área de 1.250 ha e consumo per capta de 275 L/hab.dia? Considere que existem 12 km de rede instalados. A) qm = 0,12 L/s.ha e qd = 1,15 L/s.m. B) qm = 1,15 L/s.ha e qd = 0,12 L/s.m. C) Q = 1,43 m3/s. D) qm = 1,15 L/s.m e qd = 0,12 L/s.ha. E) qm = 0,12 L/s.m e qd = 1,15 L/s.ha. Verificar Resposta Estudar Cards Todas as Questões |
Vamos testar seus conhecimentos em Hidrologia |
A Bacia Platina é uma das principais bacias do país. Em relação às suas características, marque a alternativa correta. A) É formada pelas bacias dos rios Paraná, Paraguai, Araguaia e Tocantins. B) Está localizada no Brasil, Argentina, Chile e Paraguai. C) Possui a maior usina hidrelétrica totalmente brasileira. D) Apresenta baixo aproveitamento econômico de sua área. E) É a bacia brasileira com maior capacidade instalada de geração de energia. Verificar Resposta Estudar Cards Todas as Questões |
Vamos testar seus conhecimentos em Python |
Qual dessas coleções Python é ordenada, mutável (permite mudanças) e permite duplicação de itens? A) Dictionary B) Tuple C) List D) Set E) Nenhuma das opções anteriores Verificar Resposta Estudar Cards Todas as Questões |
Vamos testar seus conhecimentos em Fenômeno de Transportes e Hidráulica |
Bombas hidráulicas As bombas hidráulicas são um grupo de máquinas hidráulicas muito comum em sistemas de abastecimento e distribuição de água de uma cidade. Resumidamente, as bombas captam água bruta e a transportam para uma estação de tratamento para que ela seja adequada aos parâmetros de potabilidade antes do fornecimento para os usuários. Sobre as bombas hidráulicas, o que é correto afirmar? A) As bombas hidráulicas podem ser dividas em: centrífugas, rotativas, de êmbolo e do tipo de poços profundos. B) As bombas hidráulicas podem ser dividas em: centrípetas, rotacionais, de pistão e do tipo poços largos-rasos. C) As bombas hidráulicas podem ser divididas em bombas de deslocamento positivo e bombas centrífugas. D) As bombas hidráulicas podem ser agrupadas junto com as turbinas hidráulicas no grupo de máquinas fixas. E) As bombas centrífugas não são muito utilizadas, apesar de sua aplicação em baixas pressões e altas vazões. Verificar Resposta Estudar Cards Todas as Questões |
Mais Desafios de Programação e Exercícios e Algoritmos Resolvidos de GNU Octave |
Veja mais Dicas e truques de GNU Octave |
Dicas e truques de outras linguagens |
Códigos Fonte |
Software de Gestão Financeira com código fonte em PHP, MySQL, Bootstrap, jQuery - Inclui cadastro de clientes, fornecedores e ticket de atendimento Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais |
Controle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidades Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais |
Linguagens Mais Populares |
1º lugar: Java |