Você está aqui: Python ::: Matplotlib Python Library (Biblioteca Python Matplotlib) ::: Geração e Plotagem de Gráficos usando Matplotlib

Como gerar o gráfico da função tangente usando a biblioteca Matplotlib do Python

Quantidade de visualizações: 1908 vezes
A função tangente é a razão entre o seno e o cosseno, ou seja, trata-se de uma razão trigonométrica indefinida para os ângulos de 90º e 270º, pois são os valores em que o cosseno é igual a 0, o que geraria uma divisão por 0 (zero).

Diferentemente da função seno e da função cosseno, a imagem da função tangente é o conjunto dos números reais, ou seja, ela não é limitada e não possui valor de máximo nem de mínimo.

Nesta dica mostrarei como podemos usar as capacidades de geração de gráficos da biblioteca Matplotlib da linguagem Python, combinadas com as funções linspace() e tan() da biblioteca NumPy para gerar o gráfico da função tangente.

Antes de vermos o código, observe o resultado gerado na imagem a seguir:



Veja agora o código Python completo para a geração do gráfico:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# importamos a biblioteca NumPy
import numpy as np
#importamos a biblioteca Matplotlib
import matplotlib.pyplot as plt
  
def main():
  # definimos o título para a área de plotagem
  plt.title('Gráfico da Função Tangente')
  
  # vamos exibir o grid da área de plotagem
  plt.grid(True)
  
  # vamos gerar 1000 valores igualmente espaçados
  # começando em -2 * np.pi e indo até 2 * np.pi
  x = np.linspace(-2 * np.pi, 2 * np.pi, 1000)

  # agora plotamos o vetor x e a tangente de cada um dos
  # valores desse vetor
  plt.plot(x, np.tan(x))

  # definimos os limites no eixo y
  plt.ylim(-5, 5)
  
  # finalmente exibimos o resultado
  plt.show()
  
if __name__== "__main__":
  main()


Link para compartilhar na Internet ou com seus amigos:

Python ::: NumPy Python Library (Biblioteca Python NumPy) ::: Passos Iniciais

Machine Learning para iniciantes - Como usar a biblioteca NumPy em seus programas Python

Quantidade de visualizações: 2118 vezes
Criada em 2005 por Travis Oliphant, a biblioteca NumPy é uma biblioteca Python que, embora escrita parcialmente em código Python, possui trechos de código C ou C++, principalmente as partes que requerem processamento ou computação mais veloz.

Estudiosos, entusiastas e desenvolvedores de soluções envolvendo Data Science, Deep Learning, Machine Learning e Inteligência Artificial (IA) em geral, encontram nessa biblioteca muitas funções úteis para a criação e manipulação de vetores e matrizes, além de funções para trabalhar no domínio de algebra linear e transformação fourier.

A biblioteca NumPy (Numerical Python) é um projeto open source e pode ser usada livremente em qualquer programa Python. Uma das razões para a sua adoção é a substituição das listas Python pelos vetores e matrizes NumPy, já que estes últimos são 50 vezes mais rápidas que as listas Python, que muitas vezes fazem o papel de arrays.

Minha instalação do Python já possui a biblioteca NumPy?

A melhor forma de descobrir se a NumPy já está disponível para os seus códigos Python é rodando o seguinte trecho de código:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# importamos a bibliteca NumPy
import numpy as np
 
def main():
  # construimos um vetor de cinco elementos
  vetor = np.array([20, 3, 87, 4, 120])
  # imprimimos seu conteúdo
  print(vetor)

if __name__== "__main__":
  main()

Se você vir o resultado abaixo:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

[ 20   3  87   4 120]

então sua instalação do Python já contém a biblioteca NumPy e você está pronto(a) para experimentar as demais dicas e truques dessa seção.

Porém, se você ainda não tiver a NumPy, a seguinte mensagem de erro será exibida:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

Exception has occurred: ModuleNotFoundError
No module named 'numpy'
  File "C:\estudos_python\estudos.py", line 2, in <module>
    import numpy as np

Não se desespere. Basta abrir uma janela de prompt e disparar o comando abaixo:

pip install numpy

Aguarde alguns minutos para que o Pip baixe e instale a biblioteca. Em seguida tente executar o código acima novamente.

Agora é só aproveitar tudo que a biblioteca NumPy tem a nos oferecer.


Python ::: Dicas & Truques ::: Arquivos e Diretórios

Como criar um diretório em Python usando a função mkdir() do módulo os

Quantidade de visualizações: 3027 vezes
Podemos usar a função mkdir() do módulo os da linguagem Python para criarmos diretórios. Em sua versão mais simples, este método pede somente o nome e caminho do diretório a ser criado. Se o caminho for omitido, o novo diretório será criado no diretório atual, ou seja, o diretório da aplicação Python.

Veja um exemplo no qual criamos um diretório chamado "app" no diretório "C:\estudos_python":

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# importa o módulo os
import os

# método principal  
def main():
  # nome do diretório
  diretorio = "C:\\estudos_python\\app"

  # vamos criar o diretório
  os.mkdir(diretorio)

  # mostramos o resultado
  print('O diretório foi criado com sucesso.')

if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

c:\estudos_python>python estudos.py
O diretório foi criado com sucesso.

Note que um erro do tipo FileExistsError será exibido se o diretório já existir:

Traceback (most recent call last):
File "c:\estudos_python\estudos.py", line 16, in <module>
main()
File "c:\estudos_python\estudos.py", line 10, in main
os.mkdir(diretorio)
FileExistsError: [WinError 183] Não é possível criar um arquivo já existente: 'C:\\estudos_python\\app'

Uma forma de evitar este erro é verificar se o diretório já existe ou usar uma construção try...except. Veja:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# importa o módulo os
import os

# método principal  
def main():
  # nome do diretório
  diretorio = "C:\\estudos_python\\app"

  try:
    # vamos criar o diretório
    os.mkdir(diretorio)
    # mostramos o resultado
    print('O diretório foi criado com sucesso.')
  except os.error as error_msg:
    print("Houve um erro: %s" % str(error_msg))

if __name__== "__main__":
  main()

Execute o código novamente e veja como o tratamento de erro ficou mais elegante.


Python ::: Python para Engenharia ::: Engenharia Civil - Cálculo Estrutural

Como calcular o Índice de Esbeltez de um pilar em Python - Python para Engenharia Civil e Cálculo Estrutural

Quantidade de visualizações: 58 vezes


O índice de esbeltez de um pilar, representado pela letra grega &#955; (lambda) é uma relação que mede a altura do pilar em relação à sua largura ou seção transversal. Esse índice é usado para avaliar a suscetibilidade de um pilar à flambagem, que é um tipo de falha estrutural que pode ocorrer em pilares esbeltos sob compressão.

Segundo a NBR 6118, 15.8.2, os pilares devem ter índice de esbeltez menor ou igual a 200 (&#955; &#8804; 200). Apenas no caso de postes com força normal menor que 0,10 fcd x Ac, o índice de esbeltez pode ser maior que 200.

O índice de esbeltez é a razão entre o comprimento de flambagem e o raio de giração, nas direções a serem consideradas. De acordo com o comprimento de flambagem, os pilares classificam-se como: curto, se &#955; < 35; medianamente esbelto, se 35 < &#955; < 90; esbelto, se 90 < &#955; < 140; e muito esbelto, se 140 < &#955; < 200.

A fórmula para o cálculo do índice de esbeltez pode ser definida como:

\[\lambda = 3,46 \cdot \frac{le}{h} \]

Onde:

&#955; = número adimensional representando o índice de esbeltez ao longo da direção escolhida (x ou y);

le = algura do pilar, ou seja, o comprimento do pilar em centímetros.

h = dimensão escolhida (x ou y) em centímetros.

De acordo com a norma NBR 6118 (ABNT, 2014), se o índice de esbeltez na direção escolhida for menor que 35, nós não precisamos considerar os efeitos locais de 2ª ordem.

Vamos agora ao código Python? Pediremos ao usuário para informar o comprimento (altura) do pilar em metros, as dimensões nas direções x e y e mostraremos os índices de esbeltez nas direções x e y do pilar com as respectivas anotações da necessidade ou não da consideração dos efeitos locais de 2ª ordem. Veja:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

# método principal
def main():
  # vamos pedir o comprimento do pilar em metros (pé direito)
  le = float(input("Informe o comprimento do pilar (em metros): "))
  # vamos converter o comprimento em metros para centímetros
  le = le * 100.0

  # vamos pedir as dimensões do pilar
  hx = float(input("Informe a dimensão do pilar na direção x (em cm): "))
  hy = float(input("Informe a dimensão do pilar na direção y (em cm): "))

  # agora vamos calcular o índice de esbeltez na direção x
  lambda_x = 3.46 * (le / hx)

  # agora vamos calcular o índice de esbeltez na direção y
  lambda_y = 3.46 * (le / hy)

  # e mostramos os resultados
  print("\nO índice de esbeltez na direção x é: {0}".format(round(lambda_x, 2)))

  # precisamos considerar os efeitos locais de segunda ordem na direção x?
  if lambda_x < 35:
    print("Não considerar os efeitos locais de 2ª ordem na direção x")
  else:
    print("Considerar os efeitos locais de 2º ordem na direção x")

  print("\nO índice de esbeltez na direção y é: {0}".format(round(lambda_y, 2)))

  # precisamos considerar os efeitos locais de segunda ordem na direção y?
  if lambda_y < 35:
    print("Não  considerar os efeitos locais de 2ª ordem na direção y")
  else:
    print("Considerar os efeitos locais de 2ª ordem na direção y")

if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

Informe o comprimento do pilar (em metros): 2.88
Informe a dimensão do pilar na direção x (em cm): 40
Informe a dimensão do pilar na direção y (em cm): 19

O índice de esbeltez na direção x é: 24.91
Não considerar os efeitos locais de 2ª ordem na direção x

O índice de esbeltez na direção y é: 52.45
Considerar os efeitos locais de 2ª ordem na direção y


Vamos testar seus conhecimentos em Engenharia Civil - Estruturas de Aço e Madeira

Ações em estruturas: apresentação dos principais carregamentos na análise de estruturas convencionais

Qual das alternativas a seguir possui exemplos, na ordem correta de ações: permanentes diretas, permanentes indiretas, acidentais diretas, acidentais indiretas e excepcionais.

A) Peso próprio, variações de temperatura, cargas móveis, protensão e terremotos.

B) Peso próprio, protensão, vento, variações de temperatura e terremotos.

C) Deslocamento de apoio, imperfeições geométricas, vento, variações de temperatura e terremotos.

D) Peso próprio, imperfeições geométricas, vento, força longitudinal de frenagem e explosões.

E) Peso próprio, imperfeições geométricas, vento, variações de temperatura e cargas verticais de uso da construção.
Verificar Resposta Estudar Cards Todas as Questões

Vamos testar seus conhecimentos em Engenharia Civil - Construção Civil

Locação da obra

Locar ou marcar a obra é uma das etapas de maior importância da construção. Sobre essa etapa, assinale a alternativa que apresenta a afirmação verdadeira.

A) A demarcação dos pontos que definem o edifício no terreno é feita a partir de um referencial previamente definido, considerando-se três coordenadas, sendo duas planimétricas e uma altimétrica.

B) Para a locação da obra, são necessários somente os projetos de estrutura e de arquitetura.

C) A locação da obra deve ser realizada somente após a movimentação de terra e a execução das fundações.

D) As tábuas que compõem os quadros de madeira (gabaritos) só precisam ser niveladas nos casos em que o terreno possui desnível superior a um metro.

E) O gabarito somente poderá ser desmontado após a execução da totalidade da estrutura de concreto.
Verificar Resposta Estudar Cards Todas as Questões

Vamos testar seus conhecimentos em Python

Qual é a forma correta de se retornar o primeiro caractere de uma string em Python?

A) letra = "BRASIL".char(0)

B) letra = "BRASIL"[0]

C) letra = "BRASIL".substring(0, 1)

D) letra = "BRASIL".sub(0, 1)

E) letra = sub("BRASIL", 0, 1)
Verificar Resposta Estudar Cards Todas as Questões

Vamos testar seus conhecimentos em JavaScript

JavaScript é o mesmo que Java?

A) Sim

B) Não
Verificar Resposta Estudar Cards Todas as Questões

Vamos testar seus conhecimentos em Java

Analise o seguinte código Java

double a = 0 / 5.0;
System.out.println(a);

Qual é o resultado de sua execução?

A) Infinity

B) NaN

C) Uma exceção java.lang.ArithmeticException: / by zero

D) 0.0
Verificar Resposta Estudar Cards Todas as Questões

Desafios, Exercícios e Algoritmos Resolvidos de Python

Veja mais Dicas e truques de Python

Dicas e truques de outras linguagens

Códigos Fonte

Programa de Gestão Financeira Controle de Contas a Pagar e a Receber com Cadastro de Clientes e FornecedoresSoftware de Gestão Financeira com código fonte em PHP, MySQL, Bootstrap, jQuery - Inclui cadastro de clientes, fornecedores e ticket de atendimento
Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais
Controle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidadesControle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidades
Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: Delphi
6º lugar: C
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2024 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 61 usuários muito felizes estudando em nosso site.