Você está aqui: Python ::: Python para Engenharia ::: Física - Mecânica |
||||
Como usar a Equação de Torricelli para calcular a velocidade da queda livre dada a altura (e a aceleração da gravidade) em PythonQuantidade de visualizações: 6948 vezes |
||||
A Equação de Torricelli pode ser usada quando temos a altura na qual um corpo (objeto) foi abandonado e gostaríamos de calcular sua velocidade de queda livre em m/s ou km/h imediatamente antes de tal corpo tocar o chão. Para isso usaremos a seguinte fórmula: \[ v^2 = \text{2} \cdot \text{g} \cdot \text{H} \] Onde: g ? aceleração da gravidade (m/s2) H ? altura em metros na qual o corpo é abandonado. Vamos ver um exemplo? Veja o seguinte enunciado: 1) Uma bola de basquete é abandonada a uma altura de 5 metros em relação ao chão. Se essa bola estiver movendo-se em queda livre, qual será a velocidade da bola, em km/h, imediatamente antes de tocar o chão? Note que o exercício pede a velocidade em km/h, e não m/s. Assim, veja o código Python completo para o cálculo:
Ao executar este código Python nós teremos o seguinte resultado: A velocidade da queda livre em m/s é: 9.902853m/s. A velocidade da queda livre em km/h é: 35.650271km/h. Note que definimos, no código, a aceleração da gravidade terreste como 9.80665m/s2. |
||||
![]() |
||||
Python ::: Dicas & Truques ::: Data e Hora |
||||
Como adicionar dias à uma data em Python usando a função timedelta() da classe datetimeQuantidade de visualizações: 8944 vezes |
||||
Nesta dica mostrarei como é possível usar o método timedelta() da classe datetime do Python para adicionar um determinado número de dias a uma data. O truque aqui é fornecer apenas o dia para o método timedelta(), obter o resultado e somá-lo com a data que já temos. Veja o código completo para o exemplo:
Ao executarmos este código Python nós teremos o seguinte resultado: Hoje é: 2021-03-11 Daqui à 2 dias será 2021-03-13 | ||||
Python ::: Matplotlib Python Library (Biblioteca Python Matplotlib) ::: Geração e Plotagem de Gráficos usando Matplotlib |
||||
Como gerar o gráfico da função seno usando a biblioteca Matplotlib do PythonQuantidade de visualizações: 2567 vezes |
||||
Sabemos, como lembrança das nossas aulas de Trigonometria no segundo grau, que a função seno é a razão entre o cateto oposto e a hipotenusa de um triângulo retângulo, ou seja, trata-se de uma razão trigonométrica que retorna valores na faixa de -1 até 1 (ambos inclusos). Nesta dica mostrarei como podemos usar as capacidades de geração de gráficos da biblioteca Matplotlib da linguagem Python, combinadas com as funções arange() e sin() da biblioteca NumPy para gerar o gráfico da função seno. Antes de vermos o código, observe o resultado gerado na imagem a seguir: ![]() Veja agora o código Python completo para a geração do gráfico:
| ||||
Python ::: Python para Engenharia ::: Geometria Analítica e Álgebra Linear |
||||
Como calcular a norma ou módulo de vetores nos espaços R2 e R3 usando Python - Geometria Analítica e Álgebra Linear usando PythonQuantidade de visualizações: 3759 vezes |
||||
Em Geometria Analítica e Álgebra Linear, a magnitude, norma, comprimento, tamanho ou módulo (também chamado de intensidade na Física) de um vetor é o seu comprimento, que pode ser calculado por meio da distância de seu ponto final a partir da origem, no nosso caso (0,0). Considere o seguinte vetor no plano, ou seja, no espaço bidimensional, ou R2: \[\vec{v} = \left(7, 6\right)\] Aqui este vetor se inicia na origem (0, 0) e vai até as coordenadas (x = 7) e (y = 6). Veja sua plotagem no plano 2D: ![]() Note que na imagem já temos todas as informações que precisamos, ou seja, o tamanho desse vetor é 9 (arredondado) e ele faz um ângulo de 41º (graus) com o eixo x positivo. Em linguagem mais adequada da trigonometria, podemos dizer que a medida do cateto oposto é 6, a medida do cateto adjacente é 7 e a medida da hipotenusa (que já calculei para você) é 9. Note que já mostrei também o ângulo theta (__$\theta__$) entre a hipotenusa e o cateto adjacente, o que nos dá a inclinação da reta representada pelos pontos (0, 0) e (7, 6). Relembrando nossas aulas de trigonometria nos tempos do colegial, temos que o quadrado da hipotenusa é a soma dos quadrados dos catetos, ou seja, o Teorema de Pitágoras: \[a^2 = b^2 + c^2\] Como sabemos que a potenciação é o inverso da radiciação, podemos escrever essa fórmula da seguinte maneira: \[a = \sqrt{b^2 + c^2}\] Passando para os valores x e y que já temos: \[a = \sqrt{7^2 + 6^2}\] Podemos comprovar que o resultado é 9,21 (que arredondei para 9). Não se esqueça da notação de módulo ao apresentar o resultado final: \[\left|\vec{v}\right| = \sqrt{7^2 + 6^2}\] E aqui está o código Python que nos permite informar os valores x e y do vetor e obter o seu comprimento, tamanho ou módulo:
Ao executar este código nós teremos o seguinte resultado: Informe o valor de x: 7 Informe o valor de y: 6 A norma do vetor é: 9.22 Novamente note que arredondei o comprimento do vetor para melhor visualização no gráfico. Para calcular a norma de um vetor no espaço, ou seja, no R3, basta acrescentar o componente z no cálculo. | ||||
Desafios, Exercícios e Algoritmos Resolvidos de Python |
Veja mais Dicas e truques de Python |
Dicas e truques de outras linguagens |
Python - Como usar a função type() da linguagem Python para descobrir o tipo de dados de uma variável |
Códigos Fonte |
![]() Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais |
![]() Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais |
Linguagens Mais Populares |
1º lugar: Java |