Ofereço ajuda em Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD
+55 (062) 98553-6711
Ofereço ajuda em PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO
+55 (062) 98243-1195

Você está aqui: Python ::: Python para Engenharia ::: Cálculo Diferencial e Integral

Como calcular o limite de uma função usando Python e a biblioteca Sympy - Python para Engenharia

Quantidade de visualizações: 4371 vezes
Como calcular o limite de uma função usando Python e a biblioteca Sympy

Citando a Wikipédia: Na matemática, o limite de uma função é um conceito fundamental em cálculo e análise sobre o comportamento desta função quando próxima a um valor particular de sua variável independente. Informalmente, diz-se que __$\text{L}__$ é o limite da função __$\text{f(x)}__$ quando __$\text{x}__$ tende a __$\text{p}__$, escreve-se

\[ \lim_{x \to p} f(x) = L \]

quando __$\text{f(x)}__$ está arbitrariamente próximo de __$\text{L}__$ para todo __$\text{x}__$ suficientemente próximo de __$\text{p}__$. O conceito de limite pode ser estendido para funções de varias variáveis.

A biblioteca SymPy da linguagem Python facilita muito o trabalho de se calcular limites. É claro que é sempre uma boa idéia saber calcular o limite de uma função "na mão" mesmo, até para sabermos se nosso código Python está correto. No entanto, em algumas situações, lançar mão da função limit() da SymPy nos poupará um tempo incrível.

Dessa forma, a sintáxe para o cálculo do limite na SymPy segue o padrão limit(função, variável, ponto). Então, se quisermos calcular o limite de f(x) com x tendendo a 0, só precisamos fazer limit(f, x, 0).

Vamos colocar esse conhecimento em prática então? Veja o seguinte limite:

\[ \lim_{x \to 1} 5x^2 + 2x \]

Agora observe o código Python completo que calcula e retorna o limite desta função:

# vamos importar a biblioteca SymPy
from sympy import * 

def main():
  # vamos definir o símbolo x
  x = symbols("x")
  # definimos a função
  f = (5 * x ** 2) + (2 * x) 
  # finalmente calculamos o limite


Ao executar este código nós teremos o seguinte resultado:

O limite da função é: 7.000000.

Logo, o limite da função no ponto __$\text{x}__$ = 1 vale 7, em outras palavras, 7 é o valor que __$f(5x^2 + 2x)__$ deveria ter em 1 para ser contínua nesse ponto.

Vamos ver mais um exemplo? Observe o seguinte limite:

\[ \lim_{x \to 1} \left(\frac{x^2 - 1}{x - 1}\right) \]

Aqui temos um situação interessante. Note que temos que fazer uma manipulação algébrica na expressão, fatorando os termos. Porém, mesmo em situações assim o método limit() da Sympy consegue interpretar a expressão simbólica corretamente e nos devolver o limite esperado. Veja o código Python completo:

# vamos importar a biblioteca SymPy
from sympy import * 

def main():
  # vamos definir o símbolo x
  x = symbols("x")
  # definimos a função
  f = (x ** 2 - 1) / (x - 1) 
  # finalmente calculamos o limite


Ao executar este código Python nós teremos o seguinte resultado:

O limite da função é: 2.000000.

Link para compartilhar na Internet ou com seus amigos:

Desafios, Exercícios e Algoritmos Resolvidos de Python

Veja mais Dicas e truques de Python

Dicas e truques de outras linguagens

E-Books em PDF

E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 27 usuários muito felizes estudando em nosso site.