Ofereço ajuda em Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD
+55 (062) 98553-6711
Ofereço ajuda em PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO
+55 (062) 98243-1195

Você está aqui: GNU Octave ::: Dicas & Truques ::: Matemática e Estatística

Como calcular raiz quadrada usando a função sqrt() do GNU Octave

Quantidade de visualizações: 4802 vezes
A raiz quadrada de um algarismo é dada por um número positivo n, que ao ser elevado ao quadrado (multiplicado por ele mesmo), se iguala a x. Na área da matemática, a raiz quadrada auxilia na resolução de vários problemas, entre eles as equações de segundo grau e o Teorema de Pitágoras.

Relembrando que a raiz quadrada é o inverso da potenciação com expoente dois, temos que:

\[\sqrt{9} = 3\]

então, pela potenciação:

\[3^2 = 9\]

Agora veremos como calcular a raiz quadrada usando a função sqrt() do GNU Octave. Se você ainda não o fez, abra o GNU Octave e digite a seguinte expressão na janela de comandos:

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

>> raiz = sqrt(9) [ENTER]
raiz = 3
>>

Agora veja como podemos usar a função sqrt() em um script do GNU Octave:

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

valor = input("Informe o valor desejado: ");
raiz = sqrt(valor);
fprintf("A raiz quadrada do valor informado é %d\n", 
  raiz);

Uma saída deste código poderia ser:

Informe o valor desejado: 25
A raiz quadrada do valor informado é 5
>>

É importante ter em mente que a função sqrt() do GNU Octave retorna um erro caso o valor do radicando for negativo. Veja:

Informe o valor desejado: -5
A raiz quadrada do valor informado é error: octave_base_value::int64_scalar_value
(): wrong type argument 'complex scalar'
>>

Link para compartilhar na Internet ou com seus amigos:

GNU Octave ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas

Como calcular o comprimento da hipotenusa em GNU Octave dadas as medidas do cateto oposto e do cateto adjascente

Quantidade de visualizações: 1032 vezes
Nesta dica mostrarei como é possível usar a linguagem GNU Octave para retornar o comprimento da hipotenusa dadas as medidas do cateto oposto e do cateto adjascente. Vamos começar analisando a imagem a seguir:



Veja que, nessa imagem, eu já coloquei os comprimentos da hipotenusa, do cateto oposto e do cateto adjascente. Para facilitar a conferência dos cálculos, eu coloquei também os ângulos theta (que alguns livros chamam de alfa) e beta já devidamente calculados.

Então, sabendo que o quadrado da hipotenusa é igual à soma dos quadrados dos catetos (Teorema de Pitógoras):

\[c^2 = a^2 + b^2\]

Tudo que temos a fazer a converter esta fórmula para código GNU Octave (um script do GNU Octave). Veja:

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

a <- 20 # medida do cateto oposto
b <- 30 # medida do cateto adjascente
  
# agora vamos calcular o comprimento da hipotenusa
c <- sqrt(power(a, 2) + power(b, 2))
 
# e mostramos o resultado
fprintf("O comprimento da hipotenusa é: %f\n\n", c)

Ao executar este código GNU Octave nós teremos o seguinte resultado:

O comprimento da hipotenusa é: 36.056000

Como podemos ver, o resultado retornado com o código GNU Octave confere com os valores da imagem apresentada.


GNU Octave ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas

Como calcular o coeficiente angular de uma reta em GNU Octave dados dois pontos no plano cartesiano

Quantidade de visualizações: 1451 vezes
O Coeficiente Angular de uma reta é a variação, na vertical, ou seja, no eixo y, pela variação horizontal, no eixo x. Sim, isso mesmo. O coeficiente angular de uma reta tem tudo a ver com a derivada, que nada mais é que a taxa de variação de y em relação a x.

Vamos começar analisando o seguinte gráfico, no qual temos dois pontos distintos no plano cartesiano:



Veja que o segmento de reta AB passa pelos pontos A (x=3, y=6) e B (x=9, y=10). Dessa forma, a fórmula para obtenção do coeficiente angular m dessa reta é:

\[\ \text{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tg \theta \]

Note que __$\Delta y__$ e __$\Delta x__$ são as variações dos valores no eixo das abscissas e no eixo das ordenadas. No triângulo retângulo que desenhei acima, a variação __$\Delta y__$ se refere ao comprimento do cateto oposto e a variação __$\Delta y__$ se refere ao comprimento do cateto adjascente.

Veja agora o trecho de código na linguagem GNU Octave (script GNU Octave) que solicita as coordenadas x e y dos dois pontos, efetua o cálculo e mostra o coeficiente angular m da reta que passa pelos dois pontos:

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

# x e y do primeiro ponto
x1 = input("Coordenada x do primeiro ponto: ")
y1 = input("Coordenada y do primeiro ponto: ")

# x e y do segundo ponto
x2 = input("Coordenada x do segundo ponto: ")
y2 = input("Coordenada y do segundo ponto: ")

# agora vamos calcular o coeficiente angular
m = (y2 - y1) / (x2 - x1)

# mostramos o resultado
fprintf("O coeficiente angular é: %f\n\n", m)

Ao executar este código em linguagem GNU Octave nós teremos o seguinte resultado:

Coordenada x do primeiro ponto: 3
x1 = 3
Coordenada y do primeiro ponto: 6
y1 = 6
Coordenada x do segundo ponto: 9
x2 = 9
Coordenada y do segundo ponto: 10
y2 = 10
m = 0.6667
O coeficiente angular é: 0.666667

Veja agora como podemos calcular o coeficiente angular da reta que passa pelos dois pontos usando o Teorema de Pitágoras. Note que agora nós estamos tirando proveito da tangente do ângulo Theta (__$\theta__$), também chamado de ângulo Alfa ou Alpha (__$\alpha__$):

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

# x e y do primeiro ponto
x1 = input("Coordenada x do primeiro ponto: ")
y1 = input("Coordenada y do primeiro ponto: ")

# x e y do segundo ponto
x2 = input("Coordenada x do segundo ponto: ")
y2 = input("Coordenada y do segundo ponto: ")

# vamos obter o comprimento do cateto oposto
cateto_oposto = y2 - y1
# e agora o cateto adjascente
cateto_adjascente = x2 - x1
# vamos obter o ângulo tetha, ou seja, a inclinação da hipetunesa
# (em radianos, não se esqueça)
tetha = atan2(cateto_oposto, cateto_adjascente)
# e finalmente usamos a tangente desse ângulo para calcular
# o coeficiente angular
tangente = tan(tetha)

# mostramos o resultado
fprintf("O coeficiente angular é: %f\n\n", tangente)

Ao executar este código você verá que o resultado é o mesmo. No entanto, fique atento às propriedades do coeficiente angular da reta:

1) O coeficiente angular é positivo quando a reta for crescente, ou seja, m > 0;

2) O coeficiente angular é negativo quando a reta for decrescente, ou seja, m < 0;

3) Se a reta estiver na horizontal, ou seja, paralela ao eixo x, seu coeficiente angular é zero (0).

4) Se a reta estiver na vertical, ou seja, paralela ao eixo y, o coeficiente angular não existe.


GNU Octave ::: Desafios e Lista de Exercícios Resolvidos ::: Pesquisa Operacional

Exercício Resolvido de Octave - Programação Linear - Um fazendeiro decidiu misturar duas rações, a Ração X e a Ração Y. Cada porção de ração dada aos animais

Quantidade de visualizações: 341 vezes
Pergunta/Tarefa:

Este exercício de Octave aborda o uso da função glpk() para resolver um problema de Pesquisa Operacional usando Programação Linear.

1) Um fazendeiro decidiu misturar duas rações, a Ração X e a Ração Y. Cada porção de ração dada aos animais exige 60g de proteína e 30g de gordura. A Ração X possui 15g de proteína e 10g de gordura, e custa R$ 80,00 a unidade. A Ração Y apresenta 20g de proteína e 5g de gordura e custa R$ 50,00 a unidade.

Quanto de cada ração deve ser usada para minimizar os custos do fazendeiro?

Sua saída deverá ser parecida com:

A solução para o problema de minimização é:

x = 2.40
y = 1.20

O custo mínimo é: 252.00
Resposta/Solução:

Antes de passarmos ao código Octave, vamos fazer a modelagem matemática do problema. O primeiro passo é identificar as variáveis. Assim, vamos chamar de x o número de unidades da Ração X e de y o número de unidades da Ração Y. Veja:

x = Número de unidades da Ração X
y = Número de unidades da Ração Y

E então temos a função custo:

custo = 80x + 50y

A primeira restrição diz respeito à quantidade de proteína em cada porção de ração. Sabendo que a Ração X apresenta 15g de proteína e a Ração Y apresenta 20g de proteína nós temos:

R1: 15x + 20y >= 60 (proteína)

A segunda restrição diz respeito à quantidade de gordura em cada porção de ração. Sabendo que a Ração X apresenta 10g de gordura e a Ração Y apresenta 5g de gordura nós temos:

R2: 10x + 5y >= 30 (gordura)

As restrições R3 e R4 dizem respeito à não negatividade das variáveis de decisão:

R3: x >= 0
R4: y >= 0

Veja agora o código Octave completo (pesquisa_operacional.m):

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

# vamos começar definindo a matriz que representa a função de
# minimização
c = [80.0, 50.0]';

# agora a matriz de restrições
A = [15, 20; 10, 5];
b = [60, 30]';

# as restrições de não negatividade e o limite superior
lb = [0, 0]';
ub = [];

# definimos as restrições como limites inferiores
ctype = "LL";

# indicamos que vamos usar variáveis contínuas (não inteiros)
vartype = "CC";

# vamos usar minimização, por isso definimos o valor 1. Se fosse
# maximização o valor seria -1
s = 1;

# definimos os parâmetros adicionais
param.msglev = 1;
param.itlim = 100;

# e chamamos a função glpk()
[xmin, fmin, status, extra] = glpk(c, A, b, lb, ub, ctype, vartype, s, param);

# mostramos a solução para o problema de minimização
printf("A solução para o problema de minimização é:\n\n");
printf("x = %.2f\n", xmin(1));
printf("y = %.2f\n", xmin(2));

# para finalizar vamos mostrar o custo mínimo
printf("\nO custo mínimo é: %.2f\n\n", fmin);

Ao executar o código você perceberá que, para minimizar os custos do fazendeiro, deverão ser usados na mistura 2,4 unidades da Ração X e 1,2 unidades da Raça Y, a um custo mínimo de R$ 252,00.


GNU Octave ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas

Como calcular o cosseno de um ângulo em GNU Octave usando a função cos() - Calculadora de cosseno em Octave

Quantidade de visualizações: 2736 vezes
Em geral, quando falamos de cosseno, estamos falando do triângulo retângulo de Pitágoras (Teorema de Pitágoras). A verdade é que podemos usar a função cosseno disponível nas linguagens de programação para calcular o cosseno de qualquer número, mesmo nossas aplicações não tendo nenhuma relação com trigonometria.

No entanto, é sempre importante entender o que é a função cosseno. Veja a seguinte imagem:



Veja que temos um triângulo retângulo com as medidas já calculadas para a hipotenusa e os dois catetos, assim como os ângulos entre eles.

Assim, o cosseno é a razão entre o cateto adjascente e a hipotenusa, ou seja, o cateto adjascente dividido pela hipotenusa. Veja a fórmula:

\[\text{Cosseno} = \frac{\text{Cateto adjascente}}{\text{Hipotenusa}} \]

Então, se dividirmos 30 por 36.056 (na figura eu arredondei) nós teremos 0.8320, que é a razão entre o cateto adjascente e a hipotenusa (em radianos).

Agora, experimente calcular o arco-cosseno de 0.8320. O resultado será 0.5881 (em radianos). Convertendo 0.5881 radianos para graus, nós obtemos 33.69º, que é exatamente o ângulo em graus entre o cateto adjascente e a hipotenusa na figura acima.

Pronto! Agora que já sabemos o que é cosseno na trigonometria, vamos entender mais sobre a função cos() da linguagem GNU Octave (script do GNU Octave). Esta função, já embutida na linguagem, recebe um valor numérico double e retorna um valor double, ou seja, também numérico) entre -1 até 1 (ambos inclusos). Veja:

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

# vamos calcular o cosseno de três números
fprintf("Cosseno de 0 = %f\n", cos(0))
fprintf("Cosseno de 1 = %f\n", cos(1))
fprintf("Cosseno de 2 = %f\n", cos(2))

Ao executar este código GNU Octave nós teremos o seguinte resultado:

Cosseno de 0 = 1.000000
Cosseno de 1 = 0.540302
Cosseno de 2 = -0.416147

Note que calculamos os cossenos dos valores 0, 1 e 2. Observe como os resultados conferem com a curva da função cosseno mostrada abaixo:




GNU Octave ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas

Como converter graus em radianos usando a função deg2rad() do GNU Octave - GNU Octave para Geometria Analítica e Álgebra Linear

Quantidade de visualizações: 1765 vezes
Quer aprender como calcular radianos ou como converter graus em radianos? Veja a fórmula nessa dica.

Quando estamos trabalhando com trigonometria no software GNU Octave, é importante ficarmos atentos ao fato de que todos os métodos e funções trigonométricas nessa linguagem recebem seus argumentos em radianos, em vez de graus.

Nesta dica veremos como converter graus em radianos (sem a chatice de ficar relembrando regra de três). Veja a fórmula abaixo:

\[Radianos = Graus \times \frac{\pi}{180}\]

Agora veja como esta fórmula pode ser escrita no GNU Octave. Primeiro vamos usar a fórmula dada e depois veremos a função deg2rad(). Assim, digite a expressão a seguir na janela de comandos do GNU Octave:

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

>> 30 * (pi / 180) [Enter]
ans = 0.5236
>>

Agora veja como podemos obter o mesmo resultado usando a função deg2rad():

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

>> deg2rad(30) [Enter]
ans = 0.5236
>>

Finalmente, veja como usar esta função em um script do GNU Octave:

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

graus = input("Informe o ângulo em graus: ");
radianos = deg2rad(graus);
fprintf("O ângulo em radianos é %f\n", radianos);

Execute este script e teremos o seguinte resultado na janela de comandos:

Informe o ângulo em graus: 30 [Enter]
O ângulo em radianos é 0.523599
>>


GNU Octave ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas

Como calcular o seno de um número ou ângulo em GNU Octave usando a função sin()

Quantidade de visualizações: 1961 vezes
Em geral, quando falamos de seno, estamos falando do triângulo retângulo de Pitágoras (Teorema de Pitágoras). A verdade é que podemos usar a função seno disponível nas linguagens de programação para calcular o seno de qualquer número, mesmo nossas aplicações não tendo nenhuma relação com trigonometria.

No entanto, é sempre importante entender o que é a função seno. Veja a seguinte imagem:



Veja que temos um triângulo retângulo com as medidas já calculadas para a hipotenusa e os dois catetos, assim como os ângulos entre eles.

Assim, o seno é a razão entre o cateto oposto (oposto ao ângulo theta) e a hipotenusa, ou seja, o cateto oposto dividido pela hipotenusa. Veja a fórmula:

\[\text{Seno} = \frac{\text{Cateto oposto}}{\text{Hipotenusa}} \]

Então, se dividirmos 20 por 36.056 (na figura eu arredondei) nós teremos 0.5547, que é a razão entre o cateto oposto e a hipotenusa (em radianos).

Agora, experimente calcular o arco-cosseno de 0.5547. O resultado será 0.9828 (em radianos). Convertendo 0.9828 radianos para graus, nós obtemos 56.31º, que é exatamente o ângulo em graus entre o cateto oposto e a hipotenusa na figura acima.

Pronto! Agora que já sabemos o que é seno na trigonometria, vamos entender mais sobre a função sin() da linguagem GNU Octave. Esta função, que já vem embutido na ferramenta, recebe um valor numérico e retorna um valor, também numérico) entre -1 até 1 (ambos inclusos). Veja:

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

>> sin(0) [ENTER]
ans = 0
>> sin(1) [ENTER]
ans = 0.8415
>> sin(2) [ENTER]
ans = 0.9093
>>

Note que calculamos os senos dos valores 0, 1 e 2. Observe como os resultados conferem com a curva da função seno mostrada abaixo:




GNU Octave ::: GNU Octave para Engenharia ::: Geometria Analítica e Álgebra Linear

GNU Octave para Álgebra Linear - Como calcular o determinante de uma matriz usando a função det() do GNU Octave

Quantidade de visualizações: 2452 vezes
Na Matemática e na Álgebra Linear, o determinante é uma função matricial que associa a cada matriz quadrada um escalar, ou seja, o determinante é uma função que transforma uma matriz quadrada em um número real.

O determinante, ou melhor, a função determinante, permite saber se a matriz tem ou não inversa (matriz inversa), pois, as matriz que não tem inversa, são precisamente aquelas cujo determinante é igual a 0. Se o determinante for diferente de zero, então a matriz é uma matriz invertível.

O determinante de uma matriz A é denotado por det(A), det A ou |A|.

O software GNU Octave nos fornece uma forma rápida para obtermos o determinante de uma matriz: a função det(). Veja o exemplo a seguir (digitando diretamente na Janela de Comandos):

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

>> A = [1, 2, 3; 2, 5, 2; 1, 3, 1] [ENTER]
A =

   1   2   3
   2   5   2
   1   3   1

>> det(A) [ENTER]
ans = 2
>>

Veja que declaramos uma matriz 3x3 com o nome A e em seguida usamos a função det() para obter o seu determinante.

Vamos ver agora como podemos fazer esse mesmo cálculo em um script do GNU Octave:

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

# declara uma matriz quadrada de ordem 3
A = [1, 2, 3; 2, 5, 2; 1, 3, 1]

# calculamos o determinante
determinante = det(A)

# mostramos os resultado
fprintf("O determinante da matriz A é %f\n", determinante);

Não se esqueça de pesquisar sobre as propriedades do determinante. São cerca de 10 propriedades que nos ajudam a calcular o determinante da matriz simplesmente olhando para a sua composição.


GNU Octave ::: Desafios e Lista de Exercícios Resolvidos ::: Equações Lineares

Exercício Resolvido de Octave - Sistema de Equações Lineares - Como resolver um sistema de equações lineares em Octave

Quantidade de visualizações: 362 vezes
Pergunta/Tarefa:

Este exercício de Octave mostra como resolver uma equação linear.

1) Dado o seguinte sistema de equações lineares:



use o GNU Octave para encontrar os valores das incógnitas x, y e z.

Sua saída deverá ser parecida com:

x =

   6
   2
   7
Resposta/Solução:

Para resolver esse sistema nós temos que definir três matrizes para representarmos as equações lineares no formato de matriz:

Ax = b

onde A, x, e b são matrizes.

Dessa forma, para obter o conjunto de soluções, ou seja, as incógnitas, nós temos que escrever as equações lineares na forma:

x = A \ b

Veja agora o código Octave para a resolução (aqui eu fiz em modo interativo):

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

>> % vamos criar a matriz A [ENTER]
>> A = [4 3 2; 3 7 4; 8 9 5]; [ENTER]
>> % agora vamos criar a matriz b [ENTER]
>> b = [44; 60; 101]; [ENTER]
>> % obtemos o conjunto de solucoes [ENTER]
>> x = A \ b [ENTER]



Vamos testar seus conhecimentos em JavaScript

Qual o resultado da execução do seguinte código JavaScript?

document.write(1 +  "2" + "2");

A) O valor 122 será exibido.

B) O valor 5 será exibido.

C) O valor 32 será exibido.

D) O valor NaN será exibido.
Verificar Resposta Estudar Cards Todas as Questões

Vamos testar seus conhecimentos em JavaScript

Como arredondar o valor 7.25 para o inteiro mais próximo em JavaScript?

A) Math.rnd(7.25)

B) Math.round(7.25)

C) rnd(7.25)

D) round(7.25)
Verificar Resposta Estudar Cards Todas as Questões

Vamos testar seus conhecimentos em Engenharia Civil - Instalações Hidráulicas Prediais

Água Fria: Sistemas de distribuição

Quanto às instalações prediais de água fria, assinale a alternativa correta.

A) Barrilete é o dispositivo instalado no interior de um reservatório para permitir o funcionamento automático da instalação.

B) Válvula redutora de pressão é instalada na entrada do reservatório quando o sistema de recalque é composto por bomba.

C) Um reservatório, quando provido de dispositivo de controle de nível, não necessita de tubulação extravasora.

D) A distribuição por gravidade é feita por um reservatório superior que, por sua vez, é alimentado diretamente pela rede pública ou por um reservatório inferior.

E) A execução do ramal predial é de responsabilidade do proprietário do imóvel; a concessionária se responsabiliza apenas pela rede que passa em frente ao imóvel.
Verificar Resposta Estudar Cards Todas as Questões

Vamos testar seus conhecimentos em Python

Qual o resultado da execução do seguinte código Python?

# cria uma lista
valores = [1, 2, 3, 4]
valores[1], valores[2] = 5, 7
print(valores)

A) Um erro de execução na linha 2

B) [5, 7, 5, 7]

C) [4, 2, 3, 1]

D) TypeError: cannot unpack non-iterable int object

E) [1, 5, 7, 4]
Verificar Resposta Estudar Cards Todas as Questões

Vamos testar seus conhecimentos em

Principais Normas Brasileiras para Concreto Armado

A ABNT é o órgão brasileiro responsável pela normatização técnica do Brasil, o qual fornece insumos para o desenvolvimento tecnológico, por meio de normativas que buscam a qualidade em qualquer tipo de trabalho.

Em se tratando da ABNT, das NBRs e do uso do concreto, assinale a alternativa que apresenta corretamente qual é a NBR que se refere ao procedimento para projeto de estruturas de concreto armado:

A) NBR 6123.

B) NBR 6120.

C) NBR 6118.

D) NBR 7187.

E) NBR 8681.
Verificar Resposta Estudar Cards Todas as Questões

Mais Desafios de Programação e Exercícios e Algoritmos Resolvidos de GNU Octave

Veja mais Dicas e truques de GNU Octave

Dicas e truques de outras linguagens

E-Books em PDF

E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 29 usuários muito felizes estudando em nosso site.