Ofereço ajuda em Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD
+55 (062) 98553-6711
Ofereço ajuda em PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO
+55 (062) 98243-1195

Você está aqui: GNU Octave ::: GNU Octave para Engenharia ::: Geometria Analítica e Álgebra Linear

GNU Octave para Álgebra Linear - Como calcular o determinante de uma matriz usando a função det() do GNU Octave

Quantidade de visualizações: 2452 vezes
Na Matemática e na Álgebra Linear, o determinante é uma função matricial que associa a cada matriz quadrada um escalar, ou seja, o determinante é uma função que transforma uma matriz quadrada em um número real.

O determinante, ou melhor, a função determinante, permite saber se a matriz tem ou não inversa (matriz inversa), pois, as matriz que não tem inversa, são precisamente aquelas cujo determinante é igual a 0. Se o determinante for diferente de zero, então a matriz é uma matriz invertível.

O determinante de uma matriz A é denotado por det(A), det A ou |A|.

O software GNU Octave nos fornece uma forma rápida para obtermos o determinante de uma matriz: a função det(). Veja o exemplo a seguir (digitando diretamente na Janela de Comandos):

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

>> A = [1, 2, 3; 2, 5, 2; 1, 3, 1] [ENTER]
A =

   1   2   3
   2   5   2
   1   3   1

>> det(A) [ENTER]
ans = 2
>>

Veja que declaramos uma matriz 3x3 com o nome A e em seguida usamos a função det() para obter o seu determinante.

Vamos ver agora como podemos fazer esse mesmo cálculo em um script do GNU Octave:

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

# declara uma matriz quadrada de ordem 3
A = [1, 2, 3; 2, 5, 2; 1, 3, 1]

# calculamos o determinante
determinante = det(A)

# mostramos os resultado
fprintf("O determinante da matriz A é %f\n", determinante);

Não se esqueça de pesquisar sobre as propriedades do determinante. São cerca de 10 propriedades que nos ajudam a calcular o determinante da matriz simplesmente olhando para a sua composição.

Link para compartilhar na Internet ou com seus amigos:

GNU Octave ::: Desafios e Lista de Exercícios Resolvidos ::: Pesquisa Operacional

Exercício Resolvido de Octave - Programação Linear - Um fazendeiro decidiu misturar duas rações, a Ração X e a Ração Y. Cada porção de ração dada aos animais

Quantidade de visualizações: 341 vezes
Pergunta/Tarefa:

Este exercício de Octave aborda o uso da função glpk() para resolver um problema de Pesquisa Operacional usando Programação Linear.

1) Um fazendeiro decidiu misturar duas rações, a Ração X e a Ração Y. Cada porção de ração dada aos animais exige 60g de proteína e 30g de gordura. A Ração X possui 15g de proteína e 10g de gordura, e custa R$ 80,00 a unidade. A Ração Y apresenta 20g de proteína e 5g de gordura e custa R$ 50,00 a unidade.

Quanto de cada ração deve ser usada para minimizar os custos do fazendeiro?

Sua saída deverá ser parecida com:

A solução para o problema de minimização é:

x = 2.40
y = 1.20

O custo mínimo é: 252.00
Resposta/Solução:

Antes de passarmos ao código Octave, vamos fazer a modelagem matemática do problema. O primeiro passo é identificar as variáveis. Assim, vamos chamar de x o número de unidades da Ração X e de y o número de unidades da Ração Y. Veja:

x = Número de unidades da Ração X
y = Número de unidades da Ração Y

E então temos a função custo:

custo = 80x + 50y

A primeira restrição diz respeito à quantidade de proteína em cada porção de ração. Sabendo que a Ração X apresenta 15g de proteína e a Ração Y apresenta 20g de proteína nós temos:

R1: 15x + 20y >= 60 (proteína)

A segunda restrição diz respeito à quantidade de gordura em cada porção de ração. Sabendo que a Ração X apresenta 10g de gordura e a Ração Y apresenta 5g de gordura nós temos:

R2: 10x + 5y >= 30 (gordura)

As restrições R3 e R4 dizem respeito à não negatividade das variáveis de decisão:

R3: x >= 0
R4: y >= 0

Veja agora o código Octave completo (pesquisa_operacional.m):

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

# vamos começar definindo a matriz que representa a função de
# minimização
c = [80.0, 50.0]';

# agora a matriz de restrições
A = [15, 20; 10, 5];
b = [60, 30]';

# as restrições de não negatividade e o limite superior
lb = [0, 0]';
ub = [];

# definimos as restrições como limites inferiores
ctype = "LL";

# indicamos que vamos usar variáveis contínuas (não inteiros)
vartype = "CC";

# vamos usar minimização, por isso definimos o valor 1. Se fosse
# maximização o valor seria -1
s = 1;

# definimos os parâmetros adicionais
param.msglev = 1;
param.itlim = 100;

# e chamamos a função glpk()
[xmin, fmin, status, extra] = glpk(c, A, b, lb, ub, ctype, vartype, s, param);

# mostramos a solução para o problema de minimização
printf("A solução para o problema de minimização é:\n\n");
printf("x = %.2f\n", xmin(1));
printf("y = %.2f\n", xmin(2));

# para finalizar vamos mostrar o custo mínimo
printf("\nO custo mínimo é: %.2f\n\n", fmin);

Ao executar o código você perceberá que, para minimizar os custos do fazendeiro, deverão ser usados na mistura 2,4 unidades da Ração X e 1,2 unidades da Raça Y, a um custo mínimo de R$ 252,00.


GNU Octave ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas

Como calcular o comprimento da hipotenusa em GNU Octave dadas as medidas do cateto oposto e do cateto adjascente

Quantidade de visualizações: 1032 vezes
Nesta dica mostrarei como é possível usar a linguagem GNU Octave para retornar o comprimento da hipotenusa dadas as medidas do cateto oposto e do cateto adjascente. Vamos começar analisando a imagem a seguir:



Veja que, nessa imagem, eu já coloquei os comprimentos da hipotenusa, do cateto oposto e do cateto adjascente. Para facilitar a conferência dos cálculos, eu coloquei também os ângulos theta (que alguns livros chamam de alfa) e beta já devidamente calculados.

Então, sabendo que o quadrado da hipotenusa é igual à soma dos quadrados dos catetos (Teorema de Pitógoras):

\[c^2 = a^2 + b^2\]

Tudo que temos a fazer a converter esta fórmula para código GNU Octave (um script do GNU Octave). Veja:

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

a <- 20 # medida do cateto oposto
b <- 30 # medida do cateto adjascente
  
# agora vamos calcular o comprimento da hipotenusa
c <- sqrt(power(a, 2) + power(b, 2))
 
# e mostramos o resultado
fprintf("O comprimento da hipotenusa é: %f\n\n", c)

Ao executar este código GNU Octave nós teremos o seguinte resultado:

O comprimento da hipotenusa é: 36.056000

Como podemos ver, o resultado retornado com o código GNU Octave confere com os valores da imagem apresentada.


GNU Octave ::: GNU Octave para Engenharia ::: Cálculo Diferencial e Integral

Como calcular a derivada de uma função usando a função diff() do GNU Octave - Regra do Tombo (ou Regra da Potência)

Quantidade de visualizações: 3558 vezes
No cálculo, a derivada em um ponto de uma função y = f(x) representa a taxa de variação instantânea de y em relação a x neste ponto.

Um exemplo típico é a função velocidade que representa a taxa de variação (derivada) da função espaço. Do mesmo modo, a função aceleração é a derivada da função velocidade.

Geometricamente, a derivada no ponto x = a de y = f(x) representa a inclinação da reta tangente ao gráfico desta função no ponto (a,~f(a)). A função que a cada ponto x associa a derivada neste ponto de f(x) é chamada de função derivada de f(x). [Citação da Wikipédia]

Nesta dica mostrarei como podemos usar a função diff() do GNU Octave para calcular a derivada de uma função usando a Regra do Tombo ou, mais formalmente, a Regra da Potência.

Dada uma função:



A Regra do Tombo pede que o n desça e multiplique o x, que agora estará elevado a n - 1. Vamos ver um exemplo então? Observe como a derivada de f(x) = x5 é calculada na imagem a seguir:



Veja agora como podemos fazer este cálculo em GNU Octave. Para isso, abra a janela de comandos e dispare as linhas a seguir:

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

>> pkg load symbolic [ENTER]
>> syms x [ENTER]
>> f = x ** 5 [ENTER]
f = (sym)

   5
  x

>> diff(f, x) [ENTER]
ans = (sym)

     4
  5*x

>>

É possível que, após o comando "syms x" você veja algumas mensagens de aviso relacionadas à sua versão instalada do Python. Não se preocupe, pois esses avisos não interferem na funcionalidade da função diff().


GNU Octave ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas

Como calcular o coeficiente angular de uma reta em GNU Octave dados dois pontos no plano cartesiano

Quantidade de visualizações: 1451 vezes
O Coeficiente Angular de uma reta é a variação, na vertical, ou seja, no eixo y, pela variação horizontal, no eixo x. Sim, isso mesmo. O coeficiente angular de uma reta tem tudo a ver com a derivada, que nada mais é que a taxa de variação de y em relação a x.

Vamos começar analisando o seguinte gráfico, no qual temos dois pontos distintos no plano cartesiano:



Veja que o segmento de reta AB passa pelos pontos A (x=3, y=6) e B (x=9, y=10). Dessa forma, a fórmula para obtenção do coeficiente angular m dessa reta é:

\[\ \text{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tg \theta \]

Note que __$\Delta y__$ e __$\Delta x__$ são as variações dos valores no eixo das abscissas e no eixo das ordenadas. No triângulo retângulo que desenhei acima, a variação __$\Delta y__$ se refere ao comprimento do cateto oposto e a variação __$\Delta y__$ se refere ao comprimento do cateto adjascente.

Veja agora o trecho de código na linguagem GNU Octave (script GNU Octave) que solicita as coordenadas x e y dos dois pontos, efetua o cálculo e mostra o coeficiente angular m da reta que passa pelos dois pontos:

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

# x e y do primeiro ponto
x1 = input("Coordenada x do primeiro ponto: ")
y1 = input("Coordenada y do primeiro ponto: ")

# x e y do segundo ponto
x2 = input("Coordenada x do segundo ponto: ")
y2 = input("Coordenada y do segundo ponto: ")

# agora vamos calcular o coeficiente angular
m = (y2 - y1) / (x2 - x1)

# mostramos o resultado
fprintf("O coeficiente angular é: %f\n\n", m)

Ao executar este código em linguagem GNU Octave nós teremos o seguinte resultado:

Coordenada x do primeiro ponto: 3
x1 = 3
Coordenada y do primeiro ponto: 6
y1 = 6
Coordenada x do segundo ponto: 9
x2 = 9
Coordenada y do segundo ponto: 10
y2 = 10
m = 0.6667
O coeficiente angular é: 0.666667

Veja agora como podemos calcular o coeficiente angular da reta que passa pelos dois pontos usando o Teorema de Pitágoras. Note que agora nós estamos tirando proveito da tangente do ângulo Theta (__$\theta__$), também chamado de ângulo Alfa ou Alpha (__$\alpha__$):

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

# x e y do primeiro ponto
x1 = input("Coordenada x do primeiro ponto: ")
y1 = input("Coordenada y do primeiro ponto: ")

# x e y do segundo ponto
x2 = input("Coordenada x do segundo ponto: ")
y2 = input("Coordenada y do segundo ponto: ")

# vamos obter o comprimento do cateto oposto
cateto_oposto = y2 - y1
# e agora o cateto adjascente
cateto_adjascente = x2 - x1
# vamos obter o ângulo tetha, ou seja, a inclinação da hipetunesa
# (em radianos, não se esqueça)
tetha = atan2(cateto_oposto, cateto_adjascente)
# e finalmente usamos a tangente desse ângulo para calcular
# o coeficiente angular
tangente = tan(tetha)

# mostramos o resultado
fprintf("O coeficiente angular é: %f\n\n", tangente)

Ao executar este código você verá que o resultado é o mesmo. No entanto, fique atento às propriedades do coeficiente angular da reta:

1) O coeficiente angular é positivo quando a reta for crescente, ou seja, m > 0;

2) O coeficiente angular é negativo quando a reta for decrescente, ou seja, m < 0;

3) Se a reta estiver na horizontal, ou seja, paralela ao eixo x, seu coeficiente angular é zero (0).

4) Se a reta estiver na vertical, ou seja, paralela ao eixo y, o coeficiente angular não existe.


GNU Octave ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas

Como calcular o cosseno de um ângulo em GNU Octave usando a função cos() - Calculadora de cosseno em Octave

Quantidade de visualizações: 2736 vezes
Em geral, quando falamos de cosseno, estamos falando do triângulo retângulo de Pitágoras (Teorema de Pitágoras). A verdade é que podemos usar a função cosseno disponível nas linguagens de programação para calcular o cosseno de qualquer número, mesmo nossas aplicações não tendo nenhuma relação com trigonometria.

No entanto, é sempre importante entender o que é a função cosseno. Veja a seguinte imagem:



Veja que temos um triângulo retângulo com as medidas já calculadas para a hipotenusa e os dois catetos, assim como os ângulos entre eles.

Assim, o cosseno é a razão entre o cateto adjascente e a hipotenusa, ou seja, o cateto adjascente dividido pela hipotenusa. Veja a fórmula:

\[\text{Cosseno} = \frac{\text{Cateto adjascente}}{\text{Hipotenusa}} \]

Então, se dividirmos 30 por 36.056 (na figura eu arredondei) nós teremos 0.8320, que é a razão entre o cateto adjascente e a hipotenusa (em radianos).

Agora, experimente calcular o arco-cosseno de 0.8320. O resultado será 0.5881 (em radianos). Convertendo 0.5881 radianos para graus, nós obtemos 33.69º, que é exatamente o ângulo em graus entre o cateto adjascente e a hipotenusa na figura acima.

Pronto! Agora que já sabemos o que é cosseno na trigonometria, vamos entender mais sobre a função cos() da linguagem GNU Octave (script do GNU Octave). Esta função, já embutida na linguagem, recebe um valor numérico double e retorna um valor double, ou seja, também numérico) entre -1 até 1 (ambos inclusos). Veja:

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

# vamos calcular o cosseno de três números
fprintf("Cosseno de 0 = %f\n", cos(0))
fprintf("Cosseno de 1 = %f\n", cos(1))
fprintf("Cosseno de 2 = %f\n", cos(2))

Ao executar este código GNU Octave nós teremos o seguinte resultado:

Cosseno de 0 = 1.000000
Cosseno de 1 = 0.540302
Cosseno de 2 = -0.416147

Note que calculamos os cossenos dos valores 0, 1 e 2. Observe como os resultados conferem com a curva da função cosseno mostrada abaixo:




GNU Octave ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas

Como calcular o seno de um número ou ângulo em GNU Octave usando a função sin()

Quantidade de visualizações: 1961 vezes
Em geral, quando falamos de seno, estamos falando do triângulo retângulo de Pitágoras (Teorema de Pitágoras). A verdade é que podemos usar a função seno disponível nas linguagens de programação para calcular o seno de qualquer número, mesmo nossas aplicações não tendo nenhuma relação com trigonometria.

No entanto, é sempre importante entender o que é a função seno. Veja a seguinte imagem:



Veja que temos um triângulo retângulo com as medidas já calculadas para a hipotenusa e os dois catetos, assim como os ângulos entre eles.

Assim, o seno é a razão entre o cateto oposto (oposto ao ângulo theta) e a hipotenusa, ou seja, o cateto oposto dividido pela hipotenusa. Veja a fórmula:

\[\text{Seno} = \frac{\text{Cateto oposto}}{\text{Hipotenusa}} \]

Então, se dividirmos 20 por 36.056 (na figura eu arredondei) nós teremos 0.5547, que é a razão entre o cateto oposto e a hipotenusa (em radianos).

Agora, experimente calcular o arco-cosseno de 0.5547. O resultado será 0.9828 (em radianos). Convertendo 0.9828 radianos para graus, nós obtemos 56.31º, que é exatamente o ângulo em graus entre o cateto oposto e a hipotenusa na figura acima.

Pronto! Agora que já sabemos o que é seno na trigonometria, vamos entender mais sobre a função sin() da linguagem GNU Octave. Esta função, que já vem embutido na ferramenta, recebe um valor numérico e retorna um valor, também numérico) entre -1 até 1 (ambos inclusos). Veja:

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

>> sin(0) [ENTER]
ans = 0
>> sin(1) [ENTER]
ans = 0.8415
>> sin(2) [ENTER]
ans = 0.9093
>>

Note que calculamos os senos dos valores 0, 1 e 2. Observe como os resultados conferem com a curva da função seno mostrada abaixo:




GNU Octave ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas

Como converter graus em radianos usando a função deg2rad() do GNU Octave - GNU Octave para Geometria Analítica e Álgebra Linear

Quantidade de visualizações: 1765 vezes
Quer aprender como calcular radianos ou como converter graus em radianos? Veja a fórmula nessa dica.

Quando estamos trabalhando com trigonometria no software GNU Octave, é importante ficarmos atentos ao fato de que todos os métodos e funções trigonométricas nessa linguagem recebem seus argumentos em radianos, em vez de graus.

Nesta dica veremos como converter graus em radianos (sem a chatice de ficar relembrando regra de três). Veja a fórmula abaixo:

\[Radianos = Graus \times \frac{\pi}{180}\]

Agora veja como esta fórmula pode ser escrita no GNU Octave. Primeiro vamos usar a fórmula dada e depois veremos a função deg2rad(). Assim, digite a expressão a seguir na janela de comandos do GNU Octave:

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

>> 30 * (pi / 180) [Enter]
ans = 0.5236
>>

Agora veja como podemos obter o mesmo resultado usando a função deg2rad():

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

>> deg2rad(30) [Enter]
ans = 0.5236
>>

Finalmente, veja como usar esta função em um script do GNU Octave:

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

graus = input("Informe o ângulo em graus: ");
radianos = deg2rad(graus);
fprintf("O ângulo em radianos é %f\n", radianos);

Execute este script e teremos o seguinte resultado na janela de comandos:

Informe o ângulo em graus: 30 [Enter]
O ângulo em radianos é 0.523599
>>


GNU Octave ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas

Como calcular o cateto oposto dadas as medidas da hipotenusa e do cateto adjascente em GNU Octave

Quantidade de visualizações: 1082 vezes
Todos estamos acostumados com o Teorema de Pitágoras, que diz que "o quadrado da hipotenusa é igual à soma dos quadrados dos catetos". Baseado nessa informação, fica fácil retornar a medida do cateto oposto quando temos as medidas da hipotenusa e do cateto adjascente. Isso, claro, via programação em linguagem GNU Octave.

Comece observando a imagem a seguir:



Veja que, nessa imagem, eu já coloquei os comprimentos da hipotenusa, do cateto oposto e do cateto adjascente. Para facilitar a conferência dos cálculos, eu coloquei também os ângulos theta (que alguns livros chamam de alfa) e beta já devidamente calculados. A medida da hipotenusa é, sem arredondamentos, 36.056 metros.

Então, sabendo que o quadrado da hipotenusa é igual à soma dos quadrados dos catetos (Teorema de Pitógoras):

\[c^2 = a^2 + b^2\]

Tudo que temos que fazer é mudar a fórmula para:

\[a^2 = c^2 - b^2\]

Veja que agora o quadrado do cateto oposto é igual ao quadrado da hipotenusa menos o quadrado do cateto adjascente. Não se esqueça de que a hipotenusa é o maior lado do triângulo retângulo.

Veja agora como esse cálculo é feito em linguagem GNU Octave (script GNU Octave):

----------------------------------------------------------------------
Se precisar de ajuda para ajustar o código abaixo de acordo com as
suas necessidades, chama a gente no WhatsApp +55 (62) 98553-6711 (Osmar)

Ah, e se puder, faça uma DOAÇÃO de qualquer valor para nos ajudar
a manter o site livre de anúncios. Ficaremos eternamente gratos ;-)
Nosso PIX é: osmar@arquivodecodigos.com.br 
----------------------------------------------------------------------

c = 36.056 # medida da hipotenusa
b = 30 # medida do cateto adjascente
  
# agora vamos calcular o comprimento da cateto oposto
a = sqrt(power(c, 2) - power(b, 2))
 
# e mostramos o resultado
fprintf("A medida do cateto oposto é: %f\n", a);

Ao executar este código GNU Octave nós teremos o seguinte resultado:

A medida do cateto oposto é: 20.000878

Como podemos ver, o resultado retornado com o código GNU Octave confere com os valores da imagem apresentada.


Vamos testar seus conhecimentos em Engenharia Civil - Construção Civil

Formas: Confecção e colocação

Em relação aos materiais utilizados para formas, assinale a alternativa correta.

A) A fibra de vidro é muito utilizada para pilares e vigas.

B) Formas em poliestireno expandido são altamente reaproveitadas.

C) Vidro é muito utilizado para concreto aparente.

D) Tubos de papelão são muito usados em pilares de seção circular e em estruturas com caixão perdido.

E) As tábuas são os materiais que proporcionam o maior reaproveitamento.
Verificar Resposta Estudar Cards Todas as Questões

Vamos testar seus conhecimentos em

Pilares centrais: dimensionamento e detalhes construtivos

Em relação aos detalhes construtivos dos pilares centrais, pode-se afirmar que:

A) não deve-se deixar vãos nas formas, pois pode ocorrer perda de nata.

B) no mercado, existem apenas as formas metálicas para concretagem de pilares.

C) quando o pilar não está no prumo, deve-se utilizar teodolito.

D) As tensões de deformação em um material dúctil são lineares.

E) O desmoldante não influencia a desmolagem dos pilares.
Verificar Resposta Estudar Cards Todas as Questões

Vamos testar seus conhecimentos em Fundações

Fundações profundas

A ABNT reconhece a execução dos seguintes tipos de estaca: madeira, aço, concreto pré-moldado, concreto moldado in loco, argamassa, calda de cimento ou qualquer combinação deles.

Com base no exposto, assinale a alternativa que define estaca metálica ou de aço.

A) Estaca armada e preenchida com argamassa de cimento e areia, moldada in loco e executada por perfuração rotativa ou rotopercussiva, revestida integralmente, no trecho em solo, por um conjunto de tubos metálicos recuperáveis.

B) Estaca executada por perfuração do solo com uma sonda ou piteira e revestimento total com camisa metálica, realizando-se gradativamente o lançamento e apiloamento do concreto, com retirada simultânea do revestimento.

C) Estaca cravada, constituída de elemento estrutural metálico produzido industrialmente, podendo ser de perfis laminados ou soldados, simples ou múltiplos, tubos de chapa dobrada ou calandrada, tubos com ou sem costura e trilhos.

D) Estaca moldada in loco, armada, executada por perfuração rotativa ou rotopercussiva e injetada com calda de cimento por um tubo com válvulas.

E) Estaca executada por perfuração do solo por trado mecânico, construída totalmente sem o emprego de revestimento ou de um fluido estabilizante.
Verificar Resposta Estudar Cards Todas as Questões

Vamos testar seus conhecimentos em Python

Qual é a forma correta de se declarar uma variável do tipo inteiro em Python?

A) valor = int(20)

B) valor = 20

C) As formas A e B estão corretas

D) valor = integer(20)

E) As formas B e D estão corretas
Verificar Resposta Estudar Cards Todas as Questões

Vamos testar seus conhecimentos em Ética e Legislação Profissional

Introdução à Ética

Entre os estudos proeminentes sobre a definição da ética, da moral, sua presença e importância entre os seres humanos racionalmente organizados em sistemas sociais, as sociedades, estão as análises e reflexões dos filósofos da Grécia Antiga. Embora cada um, entre expoentes como Platão, Aristóteles e Sócrates, tivesse uma proposta de interpretação para a moral e para a ética, é possível dizer que há uma percepção comum: a de que a "A ética é a morada do homem".

O que isso significa?

A) A moradia física para o grego era a base da sociedade, em torno da qual circundavam os demais significados socialmente apreendidos, então, ser ético era ser bom.

B) Morada é um recanto simples onde o homem pode viver com honestidade, e ser uma pessoa ética é ser honesto.

C) O sentido de morada era conceito existencial, confiado ao cidadão que, vivendo conforme normas e leis existentes, teria a segurança de uma vida ética.

D) Assim como o mito da caverna, a lenda da morada também é falsa e se destina à formação de exemplos aos estudantes de filosofia da atualidade.

E) Aristóteles escreveu essa máxima pensando em todos os habitantes da Grécia, que exibiam a igualdade de comportamento, pensamento e opinião política.
Verificar Resposta Estudar Cards Todas as Questões

Veja mais Dicas e truques de GNU Octave

Dicas e truques de outras linguagens

E-Books em PDF

E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 29 usuários muito felizes estudando em nosso site.