Você está aqui: Java ::: Java + Firebird/Interbase ::: Metadados da Base de Dados (Database Metadata)

Como retornar os tipos de dados suportados pelo Firebird e seus correspondentes JDBC

Quantidade de visualizações: 7473 vezes
Em algumas situações precisamos obter os tipos de dados suportados pelo Firebird e mapeá-los para seus correspondentes JDBC. Esta não é uma tarefa fácil, mas que, com uma pequena ajuda dos recursos de reflexão do Java, pode ser realizada depois de algumas xícaras de café.

O primeiro passo é obter os tipos de dados suportados pelo Firebird com uma chamada ao método getTypeInfo() da interface DatabaseMetaData. Os campos do ResultSet que nos interessam são TYPE_NAME e DATA_TYPE. TYPE_NAME traz o nome do tipo de dados no Firebird enquanto DATA_TYPE traz o tipo JDBC correspondente como um inteiro. Assim, o que temos que fazer é usar reflexão para obter todos os campos da classe java.sql.Types e efetuar um mapeamento entre os tipos.

Veja o código completo para o exemplo:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

package estudos_jdbc;

import java.lang.reflect.Field;
import java.sql.*;
import java.util.HashMap;
import java.util.Map;

public class Main{
  static Map mapa; // usado para mapear os tipos JDBC
  
  public static void main(String[] args) {
    // string de conexão
    String databaseURL =
      "jdbc:firebirdsql:localhost/3050:C:\\Firebird_2_5\\dados\\estudos.fdb";
    String user = "sysdba";
    String password = "masterkey";
    String driverName = "org.firebirdsql.jdbc.FBDriver";

    try {
      Class.forName(driverName).newInstance();
      Connection conn = DriverManager.getConnection(databaseURL, user, password);

      // vamos obter um objeto da classe org.firebirdsql.jdbc.FBDatabaseMetaData
      DatabaseMetaData dbmd = conn.getMetaData();

      // vamos obter os tipos de dados suportados por esta versão do Firebird
      // e seus correspondentes JDBC
      ResultSet tiposDados = dbmd.getTypeInfo();
      while(tiposDados.next()){
        System.out.println("Firebird: " + tiposDados.getString("TYPE_NAME") +
          " - JDBC: " + getJdbcTypeName(Integer.parseInt(tiposDados.getString("DATA_TYPE"))));
      }
      
      // vamos fechar o ResultSet
      tiposDados.close();
    }
    catch (SQLException ex) {
      System.out.println("SQLException: " + ex.getMessage());
      System.out.println("SQLState: " + ex.getSQLState());
      System.out.println("VendorError: " + ex.getErrorCode());
    }
    catch (Exception e) {
      System.out.println("Problemas ao tentar conectar com o banco de dados: " + e);
    }
  }

  // Este método retorna o nome de um tipo JDBC
  // O retorno é null se o tipo JDBC não puder ser reconhecido
  public static String getJdbcTypeName(int jdbcType){
    // vamos usar reflection para mapear valores inteiros a seus nomes
    if(mapa == null) {
      mapa = new HashMap();

      // vamos obter todos os campos da classe java.sql.Types
      Field[] campos = java.sql.Types.class.getFields();
      
      // vamos percorrer os campos
      for(int i = 0; i < campos.length; i++){
        try{
          // vamos obter o nome do campo
          String nome = campos[i].getName();

          // vamos obter o valor do campo
          Integer valor = (Integer)campos[i].get(null);

          // vamos adicionar ao mapa
          mapa.put(valor, nome);
        }
        catch(IllegalAccessException e){
          System.out.println("Ops: " + e.getMessage());
        }
      }
    }

    // vamos retornar o nome do tipo JDBC
    return (String)mapa.get(new Integer(jdbcType));
  }
}

O resultado da execução deste código foi:

Firebird: BIGINT - JDBC: BIGINT
Firebird: BLOB SUB_TYPE 0 - JDBC: LONGVARBINARY
Firebird: BLOB SUB_TYPE 1 - JDBC: LONGVARCHAR
Firebird: CHAR - JDBC: CHAR
Firebird: NUMERIC - JDBC: NUMERIC
Firebird: DECIMAL - JDBC: DECIMAL
Firebird: INTEGER - JDBC: INTEGER
Firebird: SMALLINT - JDBC: SMALLINT
Firebird: FLOAT - JDBC: FLOAT
Firebird: DOUBLE PRECISION - JDBC: DOUBLE
Firebird: VARCHAR - JDBC: VARCHAR
Firebird: DATE - JDBC: DATE
Firebird: TIME - JDBC: TIME
Firebird: TIMESTAMP - JDBC: TIMESTAMP
Firebird: ARRAY - JDBC: OTHER
Firebird: BLOB SUB_TYPE <0 - JDBC: BLOB

Link para compartilhar na Internet ou com seus amigos:

Java ::: Dicas & Truques ::: Ordenação e Pesquisa (Busca)

Como implementar a ordenação Quicksort em Java - Apostila de Java para iniciantes

Quantidade de visualizações: 345 vezes
A ordenação Quicksort é um dos algorítmos de ordenação mais encontrados em aplicações reais de programação. No Delphi esta ordenação é encontrada no objeto TList. No Java podemos encontrá-lo no método Arrays.sort(). Na linguagem C a ordenação Quicksort é implementada na função qsort() da biblioteca padrão.

O algoritmo de ordenação Quicksort é do tipo dividir para conquistar (divide-and-conquer principle). Neste tipo de algoritmo o problema é dividido em sub-problemas e a solução é concatenada quando as chamadas recursivas atingirem o caso base.

O vetor (ou array) a ser ordenado é dividido em duas sub-listas por um elemento chamado pivô, resultando em uma lista com elementos menores que o pivô e outra lista com os elementos maiores que o pivô. Esse processo é repetido para cada chamada recursiva. Sim, a ordenação Quicksort faz uso extensivo de recursividade, razão pela qual devemos ter muito cuidado para não estourar a pilha do sistema.

Existem muitos estudos sobre o pivô ideal para a ordenação Quicksort. Nessa dica adotarei o último elemento do array ou sub-array como pivô. Em vetores não ordenados essa estratégia, em geral, resulta em uma boa escolha.

Vamos ao código Java então? Veja um programa Java completo demonstrando o uso da ordenação Quicksort para um array de 10 elementos inteiros:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

package estudos;

import java.util.Scanner;

public class Estudos {
  public static void main(String[] args) {
    // vamos declarar um array de 10 elementos
    int valores[] = new int[10];
    
    // para ler a entrada do usuário
    Scanner entrada = new Scanner(System.in);
    
    // vamos pedir ao usuário para informar os valores para o vetor
    for(int i = 0; i < valores.length; i++){
      System.out.print("Informe o valor do elemento " + i + ": ");
      valores[i] = Integer.parseInt(entrada.nextLine()); 
    }

    // vamos mostrar o array informado
    System.out.println("\nO array informado foi:\n");
    for(int i = 0; i < valores.length; i++){
      System.out.print(valores[i] + "  ");
    }
    
    // vamos ordenar o vetor usando a ordenação Quicksort
    quickSort(valores, 0, valores.length - 1);
    
    System.out.println("\n\nO array ordenado é:\n");
    for(int i = 0; i < valores.length; i++){
      System.out.print(valores[i] + "  ");
    }
    
    System.out.println("\n\n");
  }

  // função de implementação da ordenação Quicksort
  public static void quickSort(int vetor[], int inicio, int fim) {
    // o início é menor que o fim?
    if (inicio < fim) {
      // vamos obter o novo índice da partição
      int indiceParticao = particionar(vetor, inicio, fim);

      // efetuamos novas chamadas recursivas
      quickSort(vetor, inicio, indiceParticao - 1);
      quickSort(vetor, indiceParticao + 1, fim);
    }
  }
  
  // função que retorna o índice de partição
  private static int particionar(int vetor[], int inicio, int fim) {
    // para guardar o pivô
    int pivot = vetor[fim];
    int i = (inicio - 1);
 
    for (int j = inicio; j < fim; j++) {
      if (vetor[j] <= pivot) {
        i++;

        // fazemos a troca
        int temp = vetor[i];
        vetor[i] = vetor[j];
        vetor[j] = temp;
      }
    }

    // efetua a troca
    int temp = vetor[i + 1];
    vetor[i + 1] = vetor[fim];
    vetor[fim] = temp;

    return i + 1;
  }
}

Ao executar este código Java nós teremos o seguinte resultado:

Informe o valor do elemento 0: 7
Informe o valor do elemento 1: 2
Informe o valor do elemento 2: 43
Informe o valor do elemento 3: 1
Informe o valor do elemento 4: 9
Informe o valor do elemento 5: 6
Informe o valor do elemento 6: 22
Informe o valor do elemento 7: 3
Informe o valor do elemento 8: 37
Informe o valor do elemento 9: 5

O array informado foi:

7 2 43 1 9 6 22 3 37 5

O array ordenado é:

1 2 3 5 6 7 9 22 37 43


Java ::: Estruturas de Dados ::: Árvore Binária e Árvore Binária de Busca

Estruturas de Dados em Java - Como obter o nó com menor valor em uma árvore binária de busca em Java

Quantidade de visualizações: 3212 vezes
Em exemplos dessa seção nós vimos como criar árvores binárias e árvores binárias de busca em Java e como pesquisar ou fazer a sua travessia, visitando cada um dos nós. Nesta dica mostrarei como obter o nó com o menor valor em uma árvore binária. O truque aqui é descer o lado esquerdo da árvore até o último nó. Veja:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

// método que permite retornar o menor nó de uma árvore
// binária de busca
public No retornarMenorElemento(){
  // chama a versão recursiva do método
  return retornarMenorElemento(raiz);
}
  
public No retornarMenorElemento(No no){
  if((no == null) || (no.getEsquerdo() == null)){
    return no; // ponto de parada
  }
  else{ // vamos continuar descendo do lado esquerdo
    return retornarMenorElemento(no.getEsquerdo());
  }
}

Este método faz parte da classe ArvoreBinariaBusca.java. Veja agora como chamá-lo a partir da classe principal, ou seja, a classe de teste:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

package arvore_binaria;

import java.util.Scanner;

public class ArvoreBinariaTeste {
  public static void main(String[] args) {
    Scanner entrada = new Scanner(System.in);  
       
    // vamos criar um novo objeto da classe ArvoreBinariaBusca
    ArvoreBinariaBusca arvore = new ArvoreBinariaBusca();
    
    // vamos inserir 5 valores na árvore
    for(int i = 0; i < 5; i++){
      System.out.print("Informe um valor inteiro: ");
      int valor = Integer.parseInt(entrada.nextLine());
       
      // vamos inserir o nó e verificar o sucesso da operação
      if(!arvore.inserir(valor)){
        System.out.println("Não foi possível inserir." +
          " Um elemento já contém este valor.");  
      }
    }
     
    // vamos o menor elemento na árvore binária de busca
    System.out.println("\nO menor nó é: " + 
      arvore.retornarMenorElemento().getValor());
     
    System.out.println("\n");
  }
}

Ao executar este código teremos o seguinte resultado:

Informe um valor inteiro: 5
Informe um valor inteiro: 12
Informe um valor inteiro: 87
Informe um valor inteiro: 1
Informe um valor inteiro: 3

O menor nó é: 1



Java ::: Desafios e Lista de Exercícios Resolvidos ::: Estruturas de Controle

Exercícios Resolvidos de Java - Ler os lados de um triângulo e informar se ele é isósceles, escaleno ou equilátero

Quantidade de visualizações: 12538 vezes
Pergunta/Tarefa:

Um triângulo é uma forma geométrica (polígono) composta de três lados, sendo que cada lado é menor que a soma dos outros dois lados. Assim, para que um triângulo seja válido, é preciso que seus lados A, B e C obedeçam à seguinte regra:

A < (B + C), B < (A + C) e C < (A + B).

Escreva um programa Java que leia os três lados de um triângulo e verifique se tais valores realmente formam um triângulo. Se o teste for satisfatório, informe se o triângulo é isósceles (dois lados iguais e um diferente), escaleno (todos os lados diferentes) ou equilátero (todos os lados iguais).

Sua saída deverá ser parecida com:

Informe o primeiro lado do triângulo: 30
Informe o segundo lado do triângulo: 40
Informe o terceiro lado do triângulo: 60
O triângulo é escaleno
Resposta/Solução:

Veja a resolução comentada deste exercício usando Java:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

package estudos;

import java.util.Scanner;

public class Estudos {
  public static void main(String[] args) {
    // vamos fazer a leitura usando a classe Scanner
    Scanner entrada = new Scanner(System.in);
      
    // vamos ler o primeiro lado do triângulo
    System.out.print("Informe o primeiro lado do triângulo: ");
    int ladoA = Integer.parseInt(entrada.nextLine());
    
    // vamos ler o segundo lado do triângulo
    System.out.print("Informe o segundo lado do triângulo: ");
    int ladoB = Integer.parseInt(entrada.nextLine());
    
    // vamos ler o terceiro lado do triângulo
    System.out.print("Informe o terceiro lado do triângulo: ");
    int ladoC = Integer.parseInt(entrada.nextLine());
    
    // os lados informados formam um triângulo?
    if((ladoA < (ladoB + ladoC)) && (ladoB < (ladoA + ladoC)) 
      && (ladoC < (ladoA + ladoB))){
      // é um triângulo equilátero (todos os lados iguais)?
      if((ladoA == ladoB) && (ladoB == ladoC)){
        System.out.println("O triângulo é equilátero");  
      }
      else{
        // é isósceles (dois lados iguais e um diferente)?
        if((ladoA == ladoB) || (ladoA == ladoC) || (ladoC == ladoB)){
          System.out.println("O triângulo é isósceles");  
        }
        else{
          // é escaleno
          System.out.println("O triângulo é escaleno");
        }
      }
    }
    else{
      System.out.println("Os lados informados não formam um triângulo.");
    }
  }
}



Mais Desafios de Programação e Exercícios e Algoritmos Resolvidos de Java

Veja mais Dicas e truques de Java

Dicas e truques de outras linguagens

Códigos Fonte

Programa de Gestão Financeira Controle de Contas a Pagar e a Receber com Cadastro de Clientes e FornecedoresSoftware de Gestão Financeira com código fonte em PHP, MySQL, Bootstrap, jQuery - Inclui cadastro de clientes, fornecedores e ticket de atendimento
Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais
Controle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidadesControle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidades
Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: Delphi
6º lugar: C
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 32 usuários muito felizes estudando em nosso site.