Você está aqui: Delphi ::: Dicas & Truques ::: Arquivos e Diretórios |
Como testar se um arquivo existe usando a função FileExists() da unit SysUtils do DelphiQuantidade de visualizações: 19806 vezes |
Quando estamos trabalhando com arquivos, é sempre uma boa idéia checar se um arquivo já existe antes de permitir que nosso código tente criar outro arquivo com o mesmo nome. Em Delphi a existência de um arquivo pode ser verificada por meio do uso da função FileExists(), na unit SysUtils. Esta função recebe o caminho e nome do arquivo e retorna true se ele existir, e false caso contrário. Veja um trecho de código no qual testamos se um determinado aqui já existe no sistema: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- procedure TForm1.Button1Click(Sender: TObject); var arquivo: string; begin // diretorio e nome do arquivo arquivo := 'C:\arquivo de codigos\dados.txt'; // vamos verificar se o arquivo existe no caminho especificado if FileExists(arquivo) then ShowMessage('O arquivo existe') else ShowMessage('O arquivo NÃO existe'); end; Para fins de compatibilidade, esta dica foi escrita usando Delphi 2009. |
![]() |
Delphi ::: Dicas & Truques ::: Strings e Caracteres |
Como usar a função ReverseString() do Delphi para inverter o texto de uma palavra ou frase em Delphi - Invertendo o conteúdo de uma string usando DelphiQuantidade de visualizações: 25783 vezes |
Em algumas situações precisamos inverter o conteúdo de uma string, ou seja, alterar a ordem de seus caracteres de forma que a string fique de trás para frente. Em Delphi isso pode ser feito com o auxílio da função ReverseString(). Esta função recebe uma string e devolve outra string invertida. Veja um exemplo: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- procedure TForm1.Button1Click(Sender: TObject); var nome: string; // declara uma variável do tipo string begin nome := 'Osmar J. Silva'; // vamos inverter o conteúdo da string nome := ReverseString(nome); // vamos exibir o resultado ShowMessage(nome); end; Não se esqueça de adicionar a unit StrUtils na cláusula uses de seu formulário. Para questões de compatibilidade, esta dica foi escrita usando Delphi 2009. |
Delphi ::: Dicas & Truques ::: Strings e Caracteres |
Como converter todo o conteúdo de uma string para letras minúsculas usando a função AnsiLowerCase() do DelphiQuantidade de visualizações: 12829 vezes |
Algumas vezes precisamos converter todo o conteúdo de uma string para letras minúsculas. Em Delphi isso pode ser feito com o auxílio da função AnsiLowerCase(). Esta função recebe uma string e retorna outra string com todos os caracteres minúsculos. Veja o exemplo:---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- procedure TForm1.Button1Click(Sender: TObject); var nome: string; begin nome := 'OSMAR'; // vamos converter a string para letras minúsculas nome := AnsiLowerCase(nome); // exibe o resultado ShowMessage(nome); end; Note que esta função suporta caracteres de mais de um byte e com acentuações. Para questões de compatibilidade, esta dica foi escrita usando Delphi 2009. |
Delphi ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas |
Como calcular o coeficiente angular de uma reta em Delphi dados dois pontos no plano cartesianoQuantidade de visualizações: 1278 vezes |
O Coeficiente Angular de uma reta é a variação, na vertical, ou seja, no eixo y, pela variação horizontal, no eixo x. Sim, isso mesmo. O coeficiente angular de uma reta tem tudo a ver com a derivada, que nada mais é que a taxa de variação de y em relação a x. Vamos começar analisando o seguinte gráfico, no qual temos dois pontos distintos no plano cartesiano: ![]() Veja que o segmento de reta AB passa pelos pontos A (x=3, y=6) e B (x=9, y=10). Dessa forma, a fórmula para obtenção do coeficiente angular m dessa reta é: \[\ \text{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tg \theta \] Note que __$\Delta y__$ e __$\Delta x__$ são as variações dos valores no eixo das abscissas e no eixo das ordenadas. No triângulo retângulo que desenhei acima, a variação __$\Delta y__$ se refere ao comprimento do cateto oposto e a variação __$\Delta y__$ se refere ao comprimento do cateto adjascente. Veja agora o trecho de código na linguagem Delphi que solicita as coordenadas x e y dos dois pontos, efetua o cálculo e mostra o coeficiente angular m da reta que passa pelos dois pontos: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- procedure TForm4.Button2Click(Sender: TObject); var x1, y1, x2, y2, m: Double; begin // x e y do primeiro ponto x1 := 3; y1 := 6; // x e y do segundo ponto x2 := 9; y2 := 10; // agora vamos calcular o coeficiente angular m := (y2 - y1) / (x2 - x1); // e mostramos o resultado Memo1.Lines.Add('O coeficiente angular é: ' + FloatToStr(m)); end; Ao executar este código em linguagem Delphi nós teremos o seguinte resultado: O coeficiente angular é: 0,666666666666667 Veja agora como podemos calcular o coeficiente angular da reta que passa pelos dois pontos usando o Teorema de Pitágoras. Note que agora nós estamos tirando proveito da tangente do ângulo Theta (__$\theta__$), também chamado de ângulo Alfa ou Alpha (__$\alpha__$): ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- procedure TForm4.Button2Click(Sender: TObject); var x1, y1, x2, y2, tangente: Double; cateto_oposto, cateto_adjascente, tetha: Double; begin // incluir a unit Math // x e y do primeiro ponto x1 := 3; y1 := 6; // x e y do segundo ponto x2 := 9; y2 := 10; // vamos obter o comprimento do cateto oposto cateto_oposto := y2 - y1; // e agora o cateto adjascente cateto_adjascente := x2 - x1; // vamos obter o ângulo tetha, ou seja, a inclinação da hipetunesa // (em radianos, não se esqueça) tetha := ArcTan2(cateto_oposto, cateto_adjascente); // e finalmente usamos a tangente desse ângulo para calcular // o coeficiente angular tangente := Tan(tetha); // e mostramos o resultado Memo1.Lines.Add('O coeficiente angular é: ' + FloatToStr(tangente)); end; Ao executar este código você verá que o resultado é o mesmo. No entanto, fique atento às propriedades do coeficiente angular da reta: 1) O coeficiente angular é positivo quando a reta for crescente, ou seja, m > 0; 2) O coeficiente angular é negativo quando a reta for decrescente, ou seja, m < 0; 3) Se a reta estiver na horizontal, ou seja, paralela ao eixo x, seu coeficiente angular é zero (0). 4) Se a reta estiver na vertical, ou seja, paralela ao eixo y, o coeficiente angular não existe. |
Desafios, Exercícios e Algoritmos Resolvidos de Delphi |
Veja mais Dicas e truques de Delphi |
Dicas e truques de outras linguagens |
Códigos Fonte |
![]() Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais |
![]() Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais |
Linguagens Mais Populares |
1º lugar: Java |