Você está aqui: Java ::: Dicas & Truques ::: Expressões Regulares

Como usar expressões regulares em Java - Expressões regulares para iniciantes

Quantidade de visualizações: 48475 vezes
O suporte a expressões regulares ou regex tem sido parte da plataforma Java desde a versão 1.4. Contidas no pacote java.util.regex, as classes regex suportam a comparação de padrões de forma similar à linguagem Perl, mas, usando classes e a sintáxe da linguagem Java. Todo o pacote se limita a três classes: Pattern, Matcher e PatternSyntaxException. A versão 1.5 introduziu a interface MatchResult.

Use as duas classes Pattern e Matcher juntas. Defina e expressão regular com a classe Pattern. Então use a classe Matcher para verificar o padrão em relação à fonte de entrada. Uma exceção é lançada quando o padrão tem um erro de sintáxe na expressão.

Estas classes não possuem construtores. Em vez disso, compilamos uma expressão regular para obter um padrão, e então usamos o Pattern retornado para obter seu Matcher baseado na fonte de entrada:

Pattern pattern = Pattern.compile(<regular expression>); 
Matcher matcher = pattern.matcher(<input source>);


Uma vez que tenhamos um Matcher, tipicamente processamos a fonte de entrada a fim de encontrarmos as similaridades contidas. Usa-se o método find() para localizar similaridades do padrão na fonte de entrada. Cada chamada a find() continua a partir do ponto onde a última chamada parou, ou na posição 0 para a primeira chamada. As similaridades encontradas são retornadas pelo método group():

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

while(matcher.find()){ 
  System.out.printf"Found: \"%s\" from %d to %d.%n", 
    matcher.group(), matcher.start(), matcher.end()); 
} 

O código a seguir mostra um programa básico de expressões regulares, que pede ao usuário que informe tanto a expressão regular quanto a string que será comparada:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

import java.util.regex.*; 
import java.io.*;

public class Regex{ 
  public static void main(String args[]){ 
    Console console = System.console(); 

    // Obtém a expressão regular 
    String regex = console.readLine("%nInforme a expressão: "); 
    Pattern pattern = Pattern.compile(regex); 

    // Obtém a entrada 
    String source = console.readLine("Informe a entrada: "); 
    Matcher matcher = pattern.matcher(source); 

    // Mostra as similaridades 
    while(matcher.find()){ 
      System.out.printf("Encontrado: \"%s\" de %d à %d.%n", 
      matcher.group(), matcher.start(), matcher.end()); 
    } 
  } 
} 

Mas, o que realmente é uma expressão regular? A classe Pattern fornece detalhes mais profundos, mas, basicamente uma expressão regular é uma sequência de caracteres que tenta encontrar semelhanças em outra sequencia de caracteres. Por exemplo, podemos procurar o padrão literal de "eles" duplos "ll" na string "Hello, World". O programa anterior encontraria o padrão "ll" começando na posição 2 e terminando na posição 4. A posição final é a posição do próximo caractere depois do fim do padrão de semelhança.

Strings de padrão como "ll" não são muito interessantes, relatando somente onde elas estão literalmente na fonte de entrada. Padrões de expressões regulares podem incluir meta-caracteres especiais. Meta-caracteres fornecem habilidades poderosas de comparação. É possível usar os 15 caracteres "([{\^-$|]})?*+." como meta-caracteres em expressões regulares.

Alguns meta-caracteres indicam o agrupamento de caracteres. Por exemplo, os caracteres de colchetes [ e ] permitem especificar um grupo de caracteres nos quais uma similaridade ocorre se qualquer um dos caracteres entre colchetes for encontrado no texto. Por exemplo, o padrão "co[cl]a" retornará similaridade com "coca" e "cola". Ele não se igualará a "cocla", uma vez que [] é usado para igualar apenas um caractere. Veremos mais sobre quantificadores mais adiante, quando quisermos encontrar alguma coisa múltiplas vezes.

Além de tentar encontrar caracteres individuais, podemos usar os colchetes [ e ] para igualar uma faixa de caracteres, tais como as letras de j-z, definidas como [j-z]. Isso pode também ser combinado com um literal string, como em "foo[j-z]" que encontraria "fool", mas não encontraria "food", uma vez que l está na faixa de j à z e d não está. Podemos também usar o caractere ^ para representar negação, com um literal string ou uma faixa. O padrão "foo[^j-z]" encontrará palavras que começam como foo mas que não terminem com uma letra de j à z. Assim a string food agora seria encontrada. Faixas múltiplas podem ser combinadas como em [a-zA-Z] para informar as letras de a à z maiúsculas ou minúsculas.

Enquanto literais strings são ótimos como primeira lição sobre expressões regulares, as coisas mais típicas que a maioria das pessoas usam em expressões regulares são as classes de caracteres pré-definidos. É aqui que os meta-caracteres . e \ são importantes. O ponto . é usado para representar qualquer caractere. Assim, a expressão regular ".oney" encontraria money e honey, e qualquer outro conjunto de 5 caracteres que terminem em oney. O caractere \ por sua vez, é usado com outros caracteres para representar um conjunto completo de letras. Por exemplo, enquanto podemos usar [0-9] para representar um conjunto de dígitos, podemos também usar \d. Podemos ainda usar [^0-9] para representar um conjunto de caracteres que não sejam dígitos. Ou podemos usar o caractere \D. Todas estas strings de classes de caracteres são definidas na documentação da plataforma Java para a classe Pattern, uma vez que elas não são fáceis de serem lembradas. Eis aqui um sub-conjunto de algumas classes de caracteres pré-definidos especiais:

* \s -- whitespace (espaço em branco)
* \S -- non-whitespace (não seja espaço em branco)
* \w -- word character [a-zA-Z0-9] (caractere de palavra)
* \W -- non-word character (não caractere de palavra)
* \p{Punct} -- punctuation (pontuação)
* \p{Lower} -- lowercase [a-z] (minúsculas)
* \p{Upper} -- uppercase [A-Z] (maiúsculas)


Se você quiser usar uma destas strings no programa Regex mostrado acima, você as define como mostrado. \s se iguala ao espaço em branco. Se, contudo, você quiser definir a expressão regular via código, você precisa se lembrar que o caractere \ tem tratamento especial. Devemos escapar a string no código fonte:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

String regexString = "\\s"; 

Aqui, os caracteres \\ representam uma única barra invertida na string. Há outras strings especiais para representar literais strings:

* \t -- tab (tabulação)
* \n -- newline (nova linha)
* \r -- carriage return (retorno de carro)
* \xhh -- hex character 0xhh (caractere hexadecimal)
* \uhhhh -- hex character 0xhhhh (caractere hexadecimal)


Os quantificadores tornam as expressões regulares mais interessantes, pelo menos quando combinados com outras expresssões tais como classes de caracteres. Por exemplo, se quisermos encontrar uma string de três caracteres de a-z, poderíamos usar o padrão "[a-z][a-z][a-z]". Mas não precisamos fazer isso. Em vez de repetir a string, adicionamos um quantificador após o padrão. Para este exemplo específico, "[a-z][a-z][a-z]" pode ser representado como "[a-z]{3}". Para uma quantidade específica, o número vai dentro das chaves {}. Podemos também usar ?, * ou + para representar zero ou uma vez, zero ou mais vezes, ou uma ou mais vezes, respectivamente.

O padrão [a-z]? encontra um caractere de a-z zero ou uma vez. O padrão [a-z]* encontra um caractere de a-z zero ou mais vezes. O padrão [a-z]+ encontra um caractere de a-z uma ou mais vezes.

Use quantificador com cuidado, prestando muita atenção aos quantificadores que permitem zero similaridades.

Quando usamos as chaves {} como quantificadores, devemos definir uma faixa. {3} significa exatamente 3 vezes, mas poderíamos dizer {3,}, que define no mínimo três vezes. O quantificador {3,5} encontra um padrão de 3 a 5 vezes.

Há mais sobre expressões regulares que o que mostramos aqui. A arte de usá-las envolve descobrir a expressão regular correta para a situação atual. Tente diferente expressões com o programa Regex e veja se ele encontra o que você está esperando. Certifique-se de tentar diferentes quantificadores para entender realmente suas diferenças. Observe que quantificadores geralmente tentam incluir o maior número de caracteres para uma similaridade possível.

Link para compartilhar na Internet ou com seus amigos:

Java ::: Desafios e Lista de Exercícios Resolvidos ::: Arrays e Matrix (Vetores e Matrizes)

Exercício Resolvido de Java - Como rotacionar os elementos de um vetor de inteiros n vezes para a direita - Solução usando força-bruta

Quantidade de visualizações: 505 vezes
Pergunta/Tarefa:

Dado o vetor:

// vamos criar um vetor de inteiros
int valores[] = {1, 6, 9, 3, 7, 8, 5, 2};
Escreva um método Java que rotaciona este vetor para a direita um determinado número de casas. A função deverá receber o array e um inteiro indicando o número de rotações, ou seja, o número de vezes que os elementos do vetor serão movimentados para a direita.

Sua saída deverá ser parecida com:

Array na ordem original:
1 6 9 3 7 8 5 2 

Rotação do vetor depois do passo 1:
2 1 6 9 3 7 8 5 

Rotação do vetor depois do passo 2:
5 2 1 6 9 3 7 8 

Rotação do vetor depois do passo 3:
8 5 2 1 6 9 3 7 

Array depois de rotacionar 3 vezes:
8 5 2 1 6 9 3 7
Resposta/Solução:

Veja a resolução comentada deste exercício em Java:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

package estudos;

public class Estudos {
  public static void main(String[] args) {
    // vamos criar um vetor de inteiros
    int valores[] = {1, 6, 9, 3, 7, 8, 5, 2};
    
    // mostramos o array na ordem original
    System.out.println("Array na ordem original:");
    exibirVetor(valores);
    
    // vamos rotacionar o array 3 casas para a direita
    valores = rotacionarArray(valores, 3);
    
    // e mostramos o resultado
    System.out.println("Array depois de rotacionar 3 vezes:");
    exibirVetor(valores);
  }
  
  // método usado para exibir o array
  public static void exibirVetor(int []vetor){
    // percorremos cada elemento do vetor
    for (int i = 0; i < vetor.length; i++) {
      System.out.print(vetor[i] + " ");
    }
    System.out.println("\n");
  }
  
  // método que recebe um vetor de inteiros e o rotaciona um
  // determinado número de vezes
  public static int[] rotacionarArray(int[] vetor, int n) {
    // um laço externo que repete a mesma quantidade de n
    for (int i = 0; i < n; i++) {
      // começamos no último elemento e regredimos até
      // o segundo elemento do vetor
      for (int j = vetor.length - 1; j > 0; j--) {
        // avançamos um elemento de cada vez para
        // a direita
        int temp = vetor[j];
        vetor[j] = vetor[j - 1];
        vetor[j - 1] = temp;
      }  

      // mostramos o progresso
      System.out.println("Rotação do vetor depois do passo " + (i + 1) + ":");
      exibirVetor(vetor);
    }
    return vetor;
  }
}

A solução que apresentamos aqui usa a força-bruta, isto é, uma solução não otimizada e pouco recomendada para arrays com um número exagerado de elementos. Por ser força-bruta, o laço interno percorre todos os elementos do vetor, trocando-os de lugares. Em outras dicas do site nós colocamos versões melhoradas deste código.


Java ::: Desafios e Lista de Exercícios Resolvidos ::: Java Básico

Exercícios Resolvidos de Java - Como somar o primeiro e o último dígito de um número inteiro informado pelo usuário em Java

Quantidade de visualizações: 735 vezes
Pergunta/Tarefa:

Escreva um programa Java que pede para o usuário informar um número inteiro e mostre a soma do primeiro dígito com o último dígito. Atenção: você deve usar apenas os operadores matemáticos e a função log10().

Sua saída deverá ser parecida com:

Informe um número inteiro: 48763
A soma do primeiro e do último dígito é: 7
Resposta/Solução:

Veja a resolução comentada deste exercício usando Java:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

package estudos;
 
import java.util.Scanner;
 
public class Estudos{ 
  public static void main(String args[]){ 
    // vamos usar a classe Scanner para a leitura dos dados
    Scanner entrada = new Scanner(System.in);
    
    // vamos pedir para o usuário informar um número inteiro
    System.out.print("Informe um número inteiro: ");
    int numero = Integer.parseInt(entrada.nextLine());
    
    // vamos obter a quantidade (-1) de dígitos no número informado
    int quant = (int)Math.log10(numero);
    int primeiro_digito = (int)(numero / Math.pow(10, quant));
    int ultimo_digito = numero % 10;
  	
    // soma o primeiro e o último dígito
    int soma = primeiro_digito + ultimo_digito;
	
    // mostra o resultado
    System.out.println("A soma do primeiro e do último dígito é: " + soma);
  }
}



Java ::: Desafios e Lista de Exercícios Resolvidos ::: Arrays e Matrix (Vetores e Matrizes)

Exercícios Resolvidos de Java - Escreva um programa Java que leia e apresente um conjunto de números inteiros para uma matriz bidimensional 2 x 4 e apresente o valor e a posição

Quantidade de visualizações: 405 vezes
Pergunta/Tarefa:

Escreva um programa Java que leia e apresente um conjunto de números inteiros para uma matriz bidimensional 2 x 4 e apresente o valor e a posição do maior número inteiro. Você deverá informar tanto a linha quanto a coluna que o maior valor é encontrado.

Uma matriz bidimensional 2 x 4 quer dizer que a matriz possui 2 linhas e 4 colunas.

Seu programa Java deverá exibir uma saída parecida com:

Valor da linha 1 e coluna 1: 6
Valor da linha 1 e coluna 2: 9
Valor da linha 1 e coluna 3: 11
Valor da linha 1 e coluna 4: 5

Valor da linha 2 e coluna 1: 20
Valor da linha 2 e coluna 2: 63
Valor da linha 2 e coluna 3: 31
Valor da linha 2 e coluna 4: 7


Valores na matriz

    6    9   11    5
   20   63   31    7

O maior valor é 63
Ele foi encontrado na linha 2 e coluna 2
Resposta/Solução:

Veja a resolução comentada deste exercício usando Java:

----------------------------------------------------------------------
Se precisar de ajuda com o código abaixo, pode me chamar
no WhatsApp +55 (62) 98553-6711 (Osmar)
----------------------------------------------------------------------

package estudos;

import java.util.Scanner;

public class Estudos {
  public static void main(String[] args) {
    // variaveis usdas na resolução do problema
    int matriz[][] = new int[2][4];
    int maior_valor, linha, coluna;
    
    // para ler a entrada do usuário
    Scanner entrada = new Scanner(System.in);
    
    // vamos ler os valores e colocar na matriz
    for(int i = 0; i < matriz.length; i++){ // linhas
      for(int j = 0; j < matriz[0].length; j++){ // colunas
        System.out.print("Valor da linha " + (i + 1) + " e coluna " 
          + (j + 1) + ": ");
        matriz[i][j] = Integer.parseInt(entrada.nextLine());       
      }        
      System.out.println();
    }
    
    // vamos mostrar a matriz da forma que ela foi informada
    System.out.println("\nValores na matriz\n");
      
    for(int i = 0; i < matriz.length; i++){ // linhas
      for(int j = 0; j < matriz[0].length; j++){ // colunas
        System.out.printf("%5d", matriz[i][j]);   
      }
      
      // passa para a próxima linha da matriz
      System.out.println();       
    }
    
    // agora vamos localizar o maior valor na matriz
    linha = 0;
    coluna = 0;
    maior_valor = matriz[linha][coluna];
    for(int i = 0; i < matriz.length; i++){ // linhas
      for(int j = 0; j < matriz[0].length; j++){ // colunas
        if(matriz[i][j] > maior_valor){
          maior_valor = matriz[i][j];
          linha = i + 1;
          coluna = j + 1;
        }
      }
    }
    
    // vamos mostrar o resultado
    System.out.println("\nO maior valor é " + maior_valor);
    System.out.println("Ele foi encontrado na linha " + linha +
      " e coluna " + coluna);
  }
}



Vamos testar seus conhecimentos em

Domínios de Deformações

O dimensionamento de uma seção transversal de um elemento linear concreto armado, sujeito a solicitações normais, de acordo com a NBR 6118 - "Projeto de estruturas de concreto" - é realizado com base em hipóteses básicas.

A respeito dessas hipóteses, analise as informações a seguir, indicando V para as verdadeiras e F para as falsas:

( ) A distribuição das deformações ocorre de forma não linear ao longo da altura da seção.

( ) As deformações nas barras de armadura são idênticas às deformações do concreto que as envolve.

( ) Admite-se que todas as tensões de tração existentes serão resistidas pelo concreto e pela armadura.

( ) Adota-se o diagrama parábola-retângulo idealizado para o concreto comprimido.

Assinale a alternativa que contém a sequência correta:

A) V - V - F - F.

B) V - F - F - F.

C) F - V - F - V.

D) F - V - V - V.

E) V - F - F - V.
Verificar Resposta Estudar Cards Todas as Questões

Vamos testar seus conhecimentos em Python

Qual declaração de variável vai provocar um erro em Python?

A) minhaNota = 4.65

B) minha_nota = 4.65

C) Minha_nota = 4.65

D) minha-nota = 4.65

E) MinhaNota = 4.65
Verificar Resposta Estudar Cards Todas as Questões

Vamos testar seus conhecimentos em Hidrologia

(UFG 2010) As bacias hidrográficas são unidades físicas, formadas por uma porção de terra, delimitadas pelas partes mais altas do relevo, drenadas por um curso d'água principal e seus afluentes. Os processos ambientais, decorrentes da ação da precipitação, responsáveis pela modelagem do relevo na bacia hidrográfica são:

A) evaporação, condensação e infiltração.

B) vulcanismo, falhamento e fraturamento.

C) dobramento, intemperismo químico e soerguimento.

D) escorregamento, erosão e assoreamento.

E) lixiviação, intemperismo físico e laterização.
Verificar Resposta Estudar Cards Todas as Questões

Vamos testar seus conhecimentos em Fundações

Fundações diretas ou rasas

As fundações diretas ou rasas são utilizadas em situações em que as camadas do solo sejam resistentes de forma suficiente para suportar as cargas da estrutura. Elas tornam possível a transmissão dessas cargas diretamente ao solo, pela base da fundação, que é dimensionada de forma a distribuir o peso da construção no solo para que a pressão sobre ele seja compatível com a sua resistência. Analise as sentenças a respeito das fundações rasas ou diretas:

I - Transferem as cargas das estruturas para camadas subsuperficiais da terra.

II - Em uma mesma edificação, é possível encontrar mais do que dois tipos diferentes de fundações, mesmo que sejam rasas ou profundas.

III - O uso de fundações rasas será considerado uma técnica adequada quando o número de golpes do SPT for maior ou igual a 8 e a profundidade não ultrapassar 2m.

Qual(is) está(ão) correta(s)?

A) II.

B) I.

C) II e III.

D) I e III.

E) III.
Verificar Resposta Estudar Cards Todas as Questões

Vamos testar seus conhecimentos em

Ano: 2014 Banca: Fundação Carlos Chagas - FCC Prova: FCC - TCE GO - Analista de Controle Externo - Área: Engenharia - 2014

Considere uma viga de uma estrutura usual de concreto armado, submetida à flexão simples, com momento fletor de cálculo Md = 25 kNm, como ilustrado na figura abaixo.



A área necessária de armadura de tração com aço CA50, em cm2, calculada no estado limite último para situações de combinações normais, é

A) 1,0.

B) 1,2.

C) 1,6.

D) 1,8.

E) 2,0.
Verificar Resposta Estudar Cards Todas as Questões

Mais Desafios de Programação e Exercícios e Algoritmos Resolvidos de Java

Veja mais Dicas e truques de Java

Dicas e truques de outras linguagens

Códigos Fonte

Programa de Gestão Financeira Controle de Contas a Pagar e a Receber com Cadastro de Clientes e FornecedoresSoftware de Gestão Financeira com código fonte em PHP, MySQL, Bootstrap, jQuery - Inclui cadastro de clientes, fornecedores e ticket de atendimento
Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais
Controle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidadesControle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidades
Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: Delphi
6º lugar: C
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby



© 2024 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 21 usuários muito felizes estudando em nosso site.