Você está aqui: C ::: Dicas & Truques ::: Strings e Caracteres |
Como escrever uma função strtoupper() em C para transformar uma palavra inteira em letras maiúsculasQuantidade de visualizações: 8831 vezes |
A linguagem C padrão não possui uma função para transformar todas as letras de uma palavra, frase ou texto em maiúsculas, embora alguns compiladores a forneça. O que temos em C padrão é a função: int toupper(int c); maiúsculo. Podemos tirar vantagem disso e escrever uma função strtoupper(). Veja a listagem logo abaixo (uma boa oportunidade para praticar ponteiros em C): ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- #include <stdio.h> #include <stdlib.h> void strtoupper(char *string){ while(*string){ *string = toupper(*string); string++; } } int main(int argc, char *argv[]) { char frase[] = "Programando em C"; printf("Frase normal: %s\n", frase); strtoupper(frase); printf("Em letras maiusculas: %s\n\n", frase); system("PAUSE"); return 0; } Ao executar este código C nós teremos o seguinte resultado: Frase normal: Programando em C Em letras maiusculas: PROGRAMANDO EM C |
![]() |
C ::: Dicas & Truques ::: Struct (Estruturas, Registros) |
Como alocar memória para instâncias de uma estrutura (struct) e acessá-las usando ponteiros em CQuantidade de visualizações: 11370 vezes |
Esta dica mostra como declarar uma estrutura (struct), alocar duas instâncias desta e acessá-las usando ponteiros. Considere a seguinte struct: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- // define a estrutura Livro struct Livro{ char titulo[80]; int codigo; int paginas; }; Note que agora a variável titulo foi declarada como uma matriz de caracteres de 80 posições. Mais adiante você entenderá o propósito de tal abordagem. Veja agora como alocamos memória para duas instâncias desta estrutura: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- // cria dois ponteiros para duas instâncias (recém-alocadas) // de Livro Livro *a = (struct Livro*)malloc(sizeof(struct Livro)); Livro *b = (struct Livro*)malloc(sizeof(struct Livro)); A partir deste ponto as variáveis a e b são ponteiros para as duas instâncias recém alocadas. Observe que, quando usamos ponteiros para estruturas, seus membros são acessados usando-se a notação -> em vez do ponto. Veja: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- a->codigo = 342; a->paginas = 230; Para definir o valor para o membro titulo é preciso lançar mão da função strcpy(). Isso é feito porque estamos lidando com ponteiros, e cada instância de Livro possui sua área de memória a partir da qual a posição inicial da cadeia de caracteres que receberá o título do livro já foi inicializada. Veja: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- strcpy(a->titulo, "Programando em Java"); Observe agora o código completo para o exemplo: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- #include <stdio.h> #include <stdlib.h> #include <string.h> // define a estrutura Livro struct Livro{ char titulo[80]; int codigo; int paginas; }; int main(int argc, char *argv[]){ // cria dois ponteiros para duas instâncias (recém-alocadas) // de Livro Livro *a = (struct Livro*)malloc(sizeof(struct Livro)); Livro *b = (struct Livro*)malloc(sizeof(struct Livro)); // preenche os dados do primeiro Livro // Estamos usando ponteiros agora. Para definir o título // do livro é preciso usar a função strcpy, já que estamos // usando uma cadeia de caracteres strcpy(a->titulo, "Programando em Java"); a->codigo = 342; a->paginas = 230; // preenche os dados do segundo Livro strcpy(b->titulo, "JavaScript - O Guia Prático"); b->codigo = 675; b->paginas = 930; // exibe os dados do primeiro livro printf("Primeiro Livro\nTitulo: %s\nCodigo: %d\nPaginas: %d\n", a->titulo, a->codigo, a->paginas); // exibe os dados do segundo livro printf("\nSegundo Livro\nTitulo: %s\nCodigo: %d\nPaginas: %d\n", b->titulo, b->codigo, b->paginas); puts("\n\n"); system("PAUSE"); return 0; } |
C ::: C para Engenharia ::: Geometria Analítica e Álgebra Linear |
Como calcular a norma ou módulo de vetores nos espaços R2 e R3 usando C - Geometria Analítica e Álgebra Linear usando CQuantidade de visualizações: 4108 vezes |
Em Geometria Analítica e Álgebra Linear, a magnitude, norma, comprimento, tamanho ou módulo (também chamado de intensidade na Física) de um vetor é o seu comprimento, que pode ser calculado por meio da distância de seu ponto final a partir da origem, no nosso caso (0,0). Considere o seguinte vetor no plano, ou seja, no espaço bidimensional, ou R2: \[\vec{v} = \left(7, 6\right)\] Aqui este vetor se inicia na origem (0, 0) e vai até as coordenadas (x = 7) e (y = 6). Veja sua plotagem no plano 2D: ![]() Note que na imagem já temos todas as informações que precisamos, ou seja, o tamanho desse vetor é 9 (arredondado) e ele faz um ângulo de 41º (graus) com o eixo x positivo. Em linguagem mais adequada da trigonometria, podemos dizer que a medida do cateto oposto é 6, a medida do cateto adjacente é 7 e a medida da hipotenusa (que já calculei para você) é 9. Note que já mostrei também o ângulo theta (__$\theta__$) entre a hipotenusa e o cateto adjacente, o que nos dá a inclinação da reta representada pelos pontos (0, 0) e (7, 6). Relembrando nossas aulas de trigonometria nos tempos do colegial, temos que o quadrado da hipotenusa é a soma dos quadrados dos catetos, ou seja, o Teorema de Pitágoras: \[a^2 = b^2 + c^2\] Como sabemos que a potenciação é o inverso da radiciação, podemos escrever essa fórmula da seguinte maneira: \[a = \sqrt{b^2 + c^2}\] Passando para os valores x e y que já temos: \[a = \sqrt{7^2 + 6^2}\] Podemos comprovar que o resultado é 9,21 (que arredondei para 9). Não se esqueça da notação de módulo ao apresentar o resultado final: \[\left|\vec{v}\right| = \sqrt{7^2 + 6^2}\] E aqui está o código C que nos permite informar os valores x e y do vetor e obter o seu comprimento, tamanho ou módulo: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- #include <stdio.h> #include <stdlib.h> #include <math.h> int main(int argc, char *argv[]){ float x, y, norma; // vamos ler os valores x e y printf("Informe o valor de x: "); scanf("%f", &x); printf("Informe o valor de y: "); scanf("%f", &y); // vamos calcular a norma do vetor norma = sqrt(pow(x, 2) + pow(y, 2)); // mostra o resultado printf("A norma do vetor é: %f", norma); printf("\n\n"); system("PAUSE"); return 0; } Ao executar este código C nós teremos o seguinte resultado: Informe o valor de x: 7 Informe o valor de y: 6 A norma do vetor é: 9.219544457292887 Novamente note que arredondei o comprimento do vetor para melhor visualização no gráfico. Para calcular a norma de um vetor no espaço, ou seja, no R3, basta acrescentar o componente z no cálculo. |
C ::: Estruturas de Dados ::: Lista Ligada Simples |
Estruturas de Dados em C - Como inserir antes de um determinado nó em uma lista encadeada simples usando CQuantidade de visualizações: 1886 vezes |
Em algumas situações nós precisamos inserir o novo nó antes de um determinado nó na lista encadeada simples. Veja, por exemplo, uma lista com o seguintes valores: 45 | 3 | 98 | 47 Suponha que queremos inserir o valor 50 antes do 98, então o novo conteúdo da lista será: 45 | 3 | 50 | 98 | 47 Observe que neste exemplo eu tratei o caso de inserir antes do primeiro nó, ou seja, antes do 45, mas não tratei a lista vazia. Há também a questão do laço infinito caso o usuário queira inserir antes de um nó não existente (não tratada). Veja o código completo: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- #include <stdio.h> #include <stdlib.h> // estrutura Nó struct No{ int valor; struct No *proximo; }; // fim da estrutura Nó // função que permite exibir os valores de // todos os nós da lista void exibir(struct No *n){ if(n != NULL){ do{ printf("%d\n", n->valor); n = n->proximo; }while(n != NULL); } else printf("A lista esta vazia\n\n"); } // função que permite inserir um novo nó // antes de um determinado valor struct No *inserir_antes_valor(struct No *n, int v, int v_antes){ // reserva memória para o novo nó struct No *novo = (struct No*)malloc(sizeof(struct No)); novo->valor = v; // guarda o nó antes do valor que procuramos struct No *anterior = NULL; struct No *temp = n; // aponta para o início da lista // enquanto for diferente do valor que estamos procurando while(temp->valor != v_antes){ anterior = temp; // anterior recebe temp // e temp recebe o seu próximo temp = temp->proximo; } // ATENÇÃO: não estamos tratando a condição // de lista vazia. Para isso veja minha dica // sobre como inserior no início da lista // devemos inserior no início da lista? if(anterior == NULL){ // o próximo do novo nó é o início da lista novo->proximo = n; n = novo; // início da lista é o novo nó } else{ // o proximo do anterior é o novo nó anterior->proximo = novo; // e o próximo do novo nó é temp novo->proximo = temp; } return n; } // função que permite inserir nós no // final da lista. // veja que a função recebe o valor a ser // armazenado em cada nó e um ponteiro para o // início da lista. A função retorna um // ponteiro para o início da lista struct No *inserir_final(struct No *n, int v){ // reserva memória para o novo nó struct No *novo = (struct No*)malloc(sizeof(struct No)); novo->valor = v; // verifica se a lista está vazia if(n == NULL){ // é o primeiro nó...não deve apontar para // lugar nenhum novo->proximo = NULL; return novo; // vamos retornar o novo nó como sendo o início da lista } else{ // não está vazia....vamos inserir o nó no final // o primeiro passo é chegarmos ao final da lista struct No *temp = n; // vamos obter uma referência ao primeiro nó // vamos varrer a lista até chegarmos ao último nó while(temp->proximo != NULL){ temp = temp->proximo; } // na saída do laço temp aponta para o último nó da lista // novo será o último nó da lista...o campo próximo dele deve // apontar para NULL novo->proximo = NULL; // vamos fazer o último nó apontar para o nó recém-criado temp->proximo = novo; return n; // vamos retornar o início da lista intacto } } int main(int argc, char *argv[]) { // declara a lista struct No *inicio = NULL; // vamos inserir quatro valores no final // da lista inicio = inserir_final(inicio, 45); inicio = inserir_final(inicio, 3); inicio = inserir_final(inicio, 98); inicio = inserir_final(inicio, 47); // vamos exibir a lista puts("Valores atuais:\n"); exibir(inicio); // vamos inserir o valor 50 antes do 98 inicio = inserir_antes_valor(inicio, 50, 98); // vamos exibir a lista novamente puts("\nValores agora:\n"); exibir(inicio); puts("\n\n"); system("pause"); return 0; } |
Desafios, Exercícios e Algoritmos Resolvidos de C |
Veja mais Dicas e truques de C |
Dicas e truques de outras linguagens |
Códigos Fonte |
![]() Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais |
![]() Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais |
Linguagens Mais Populares |
1º lugar: Java |