Você está aqui: Python ::: Fundamentos da Linguagem ::: Variáveis e Constantes |
Como acessar variáveis globais a partir de seus métodos PythonQuantidade de visualizações: 12794 vezes |
Por padrão, nossos próprios métodos e funções em Python não enxergam as variáveis definidas fora do seu escopo, e quando o fazem, é somente para leitura, já que alterações nas variáveis fora do escopo fazem com que o interpretar crie versões locais dessas variáveis. Uma solução é usar a palavra-chave "global" antes do nome da varíável que queremos acessar. Veja como isso pode ser feito no trecho de código abaixo: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- # uma variável global nome = "Carlos" # um método que acessa a variável global def metodo(): global nome nome = "Osmar J. Silva" # função principal do programa def main(): # chama o método metodo() # mostra o resultado print("Valor alterado para:", nome) if __name__== "__main__": main() Ao executar este código Python nós teremos o seguinte resultado: Valor alterado para: Osmar J. Silva |
![]() |
Python ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas |
Como calcular o coeficiente angular de uma reta em Python dados dois pontos no plano cartesianoQuantidade de visualizações: 3080 vezes |
O Coeficiente Angular de uma reta é a variação, na vertical, ou seja, no eixo y, pela variação horizontal, no eixo x. Sim, isso mesmo. O coeficiente angular de uma reta tem tudo a ver com a derivada, que nada mais é que a taxa de variação de y em relação a x. Vamos começar analisando o seguinte gráfico, no qual temos dois pontos distintos no plano cartesiano: ![]() Veja que o segmento de reta AB passa pelos pontos A (x=3, y=6) e B (x=9, y=10). Dessa forma, a fórmula para obtenção do coeficiente angular m dessa reta é: \[\ \text{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tg \theta \] Note que __$\Delta y__$ e __$\Delta x__$ são as variações dos valores no eixo das abscissas e no eixo das ordenadas. No triângulo retângulo que desenhei acima, a variação __$\Delta y__$ se refere ao comprimento do cateto oposto e a variação __$\Delta y__$ se refere ao comprimento do cateto adjascente. Veja agora o trecho de código na linguagem Python que solicita as coordenadas x e y dos dois pontos, efetua o cálculo e mostra o coeficiente angular m da reta que passa pelos dois pontos: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- # vamos importar o módulo Math import math as math def main(): # x e y do primeiro ponto x1 = float(input("Coordenada x do primeiro ponto: ")) y1 = float(input("Coordenada y do primeiro ponto: ")) # x e y do segundo ponto x2 = float(input("Coordenada x do segundo ponto: ")) y2 = float(input("Coordenada y do segundo ponto: ")) # agora vamos calcular o coeficiente angular m = (y2 - y1) / (x2 - x1) # e mostramos o resultado print("O coeficiente angular é: %f\n\n" % m) if __name__== "__main__": main() Ao executar este código em linguagem Python nós teremos o seguinte resultado: Coordenada x do primeiro ponto: 3 Coordenada y do primeiro ponto: 6 Coordenada x do segundo ponto: 9 Coordenada y do segundo ponto: 10 O coeficiente angular é: 0.666667 Veja agora como podemos calcular o coeficiente angular da reta que passa pelos dois pontos usando o Teorema de Pitágoras. Note que agora nós estamos tirando proveito da tangente do ângulo Theta (__$\theta__$), também chamado de ângulo Alfa ou Alpha (__$\alpha__$): ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- # vamos importar o módulo Math import math as math def main(): # x e y do primeiro ponto x1 = float(input("Coordenada x do primeiro ponto: ")) y1 = float(input("Coordenada y do primeiro ponto: ")) # x e y do segundo ponto x2 = float(input("Coordenada x do segundo ponto: ")) y2 = float(input("Coordenada y do segundo ponto: ")) # vamos obter o comprimento do cateto oposto cateto_oposto = y2 - y1 # e agora o cateto adjascente cateto_adjascente = x2 - x1 # vamos obter o ângulo tetha, ou seja, a inclinação da hipetunesa # (em radianos, não se esqueça) tetha = math.atan2(cateto_oposto, cateto_adjascente) # e finalmente usamos a tangente desse ângulo para calcular # o coeficiente angular tangente = math.tan(tetha) # e mostramos o resultado print("O coeficiente angular é: %f\n\n" % tangente) if __name__== "__main__": main() Ao executar este código você verá que o resultado é o mesmo. No entanto, fique atento às propriedades do coeficiente angular da reta: 1) O coeficiente angular é positivo quando a reta for crescente, ou seja, m > 0; 2) O coeficiente angular é negativo quando a reta for decrescente, ou seja, m < 0; 3) Se a reta estiver na horizontal, ou seja, paralela ao eixo x, seu coeficiente angular é zero (0). 4) Se a reta estiver na vertical, ou seja, paralela ao eixo y, o coeficiente angular não existe. |
Python ::: Dicas & Truques ::: Data e Hora |
Datas e horas em Python - Como obter a hora como um decimal no intervalo 00-12 (formato 12 horas)Quantidade de visualizações: 7386 vezes |
Este exemplo mostra como obter a hora como um decimal no intervalo 00-12 (formato 12 horas) usando o método strftime() da classe datetime com o sinalizador "%I". Veja o código completo para a dica: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- from datetime import datetime def main(): # Obtém um datetime da data e hora atual hoje = datetime.today() # Exibe a hora atual como um decimal print(hoje.strftime("A hora é: %I")) if __name__== "__main__": main() Ao executar este código Python nós teremos o seguinte resultado: A hora é: 10 |
Python ::: Python para Engenharia ::: Cálculo Diferencial e Integral |
Como calcular o limite de uma função usando Python e a biblioteca Sympy - Python para EngenhariaQuantidade de visualizações: 4290 vezes |
Como calcular o limite de uma função usando Python e a biblioteca Sympy Citando a Wikipédia: Na matemática, o limite de uma função é um conceito fundamental em cálculo e análise sobre o comportamento desta função quando próxima a um valor particular de sua variável independente. Informalmente, diz-se que __$\text{L}__$ é o limite da função __$\text{f(x)}__$ quando __$\text{x}__$ tende a __$\text{p}__$, escreve-se \[ \lim_{x \to p} f(x) = L \] quando __$\text{f(x)}__$ está arbitrariamente próximo de __$\text{L}__$ para todo __$\text{x}__$ suficientemente próximo de __$\text{p}__$. O conceito de limite pode ser estendido para funções de varias variáveis. A biblioteca SymPy da linguagem Python facilita muito o trabalho de se calcular limites. É claro que é sempre uma boa idéia saber calcular o limite de uma função "na mão" mesmo, até para sabermos se nosso código Python está correto. No entanto, em algumas situações, lançar mão da função limit() da SymPy nos poupará um tempo incrível. Dessa forma, a sintáxe para o cálculo do limite na SymPy segue o padrão limit(função, variável, ponto). Então, se quisermos calcular o limite de f(x) com x tendendo a 0, só precisamos fazer limit(f, x, 0). Vamos colocar esse conhecimento em prática então? Veja o seguinte limite: \[ \lim_{x \to 1} 5x^2 + 2x \] Agora observe o código Python completo que calcula e retorna o limite desta função: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- # vamos importar a biblioteca SymPy from sympy import * def main(): # vamos definir o símbolo x x = symbols("x") # definimos a função f = (5 * x ** 2) + (2 * x) # finalmente calculamos o limite limite = limit(f, x, 1) # e mostramos o resultado print("O limite da função é: %f." % limite) if __name__== "__main__": main() Ao executar este código nós teremos o seguinte resultado: O limite da função é: 7.000000. Logo, o limite da função no ponto __$\text{x}__$ = 1 vale 7, em outras palavras, 7 é o valor que __$f(5x^2 + 2x)__$ deveria ter em 1 para ser contínua nesse ponto. Vamos ver mais um exemplo? Observe o seguinte limite: \[ \lim_{x \to 1} \left(\frac{x^2 - 1}{x - 1}\right) \] Aqui temos um situação interessante. Note que temos que fazer uma manipulação algébrica na expressão, fatorando os termos. Porém, mesmo em situações assim o método limit() da Sympy consegue interpretar a expressão simbólica corretamente e nos devolver o limite esperado. Veja o código Python completo: ---------------------------------------------------------------------- Se precisar de ajuda com o código abaixo, pode me chamar no WhatsApp +55 (62) 98553-6711 (Osmar) ---------------------------------------------------------------------- # vamos importar a biblioteca SymPy from sympy import * def main(): # vamos definir o símbolo x x = symbols("x") # definimos a função f = (x ** 2 - 1) / (x - 1) # finalmente calculamos o limite limite = limit(f, x, 1) # e mostramos o resultado print("O limite da função é: %f." % limite) if __name__== "__main__": main() Ao executar este código Python nós teremos o seguinte resultado: O limite da função é: 2.000000. |
Desafios, Exercícios e Algoritmos Resolvidos de Python |
Veja mais Dicas e truques de Python |
Dicas e truques de outras linguagens |
Python - Python para iniciantes - Como inserir uma determinada quantidade de espaços à direita de uma string |
Códigos Fonte |
![]() Diga adeus às planilhas do Excel e tenha 100% de controle sobre suas contas a pagar e a receber, gestão de receitas e despesas, cadastro de clientes e fornecedores com fotos e histórico de atendimentos. Código fonte completo e funcional, com instruções para instalação e configuração do banco de dados MySQL. Fácil de modificar e adicionar novas funcionalidades. Clique aqui e saiba mais |
![]() Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais |
Linguagens Mais Populares |
1º lugar: Java |