Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD e VBA
PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO

Controle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidadesCódigo-Fonte Controle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidades
Tenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais
Você está aqui: Cards de
Card 0 de 0
O filtro aplicado não retornou nenhum resultado. Clique o botão Remover Filtro ou experimente um filtro diferente.

Filtrar Cards
Use esta opção para filtrar os cards pelos tópicos que mais lhe interessam.
Termos:
Aviso Importante: Nos esforçamos muito para que o conteúdo dos cards e dos testes e conhecimento seja o mais correto possível. No entanto, entendemos que erros podem ocorrer. Caso isso aconteça, pedimos desculpas e estamos à disposição para as devidas correções. Além disso, o conteúdo aqui apresentado é fruto de conhecimento nosso e de pesquisas na internet e livros. Caso você encontre algum conteúdo que não deveria estar aqui, por favor, nos comunique pelos e-mails exibidos nas opções de contato.
Link para compartilhar na Internet ou com seus amigos:

Python ::: Dicas & Truques ::: Programação Orientada a Objetos

Programação orientada a objetos em Python: Classes, objetos, métodos e variáveis de instância - Atualizado

Quantidade de visualizações: 14407 vezes
A melhor forma de entender a programação orientada a objetos (OOP) é começar com uma analogia simples. Suponha que você queira dirigir um carro e fazê-lo ir mais rápido pressionado o acelerador. O que deve acontecer antes que você seja capaz de fazer isso? Bem, antes que você possa dirigir um carro, alguém tem que projetá-lo. Um carro geralmente começa com desenhos feitos pelos engenheiros responsáveis por tal tarefa, tal qual a planta de uma casa. Tais desenhos incluem o projeto de um acelerador que possibilita ao carro ir mais rápido. O pedal do acelerador "oculta" os mecanismos complexos responsáveis por fazer o carro ir mais rápido, da mesma forma que o pedal de freio "oculta" os mecanismos que fazem o carro ir mais devagar e o volante "oculta" os mecanismos que fazem com que o carro possa virar para a direita ou esquerda. Isso permite que pessoas com pequeno ou nenhum conhecimento de motores possam facilmente dirigir um carro.

Infelizmente, não é possível dirigir o projeto de um carro. Antes que possamos dirigí-lo, o carro deve ser construído a partir do projeto que o descreve. Um carro já finalizado tem um pedal de aceleração de verdade, que faz com que o carro vá mais rápido. Ainda assim, é preciso que o motorista pressione o pedal. O carro não acelerará por conta própria.

Agora vamos usar nosso exemplo do carro para introduzir alguns conceitos de programação importantes à programação orientada a objetos. A execução de uma determinada tarefa em um programa exige um método. O método descreve os mecanismos que, na verdade, executam a tarefa. O método oculta tais mecanismos do usuário, da mesma forma que o pedal de aceleração de um carro oculta do motorista os mecanismos complexos que fazem com que um carro vá mais rápido. Em Python, começamos criando uma unidade de programa chamada classe para abrigar um método, da mesma forma que o projeto de um carro abriga o design do pedal de acelerador. Em uma classe fornecemos um ou mais métodos que são projetados para executar as tarefas da classe. Por exemplo, a classe que representa uma conta bancária poderia conter muitos métodos, incluindo um método para depositar dinheiro na conta, outro para retirar dinheiro, um terceiro para verificar o saldo, e assim por diante.

Da mesma forma que não podemos dirigir o projeto de um carro, nós não podemos "dirigir" uma classe. Da mesma forma que alguém teve que construir um carro a partir de seu projeto antes que pudessémos dirigí-lo, devemos construir um objeto de uma classe antes de conseguirmos executar as tarefas descritas nela.

Quando dirigimos um carro, o pressionamento do acelerador envia uma mensagem ao carro informando-o da tarefa a ser executada (neste caso informando-o de que queremos ir mais rápido). Da mesma forma, enviamos mensagens aos objetos de uma classe. Cada mensagem é uma chamada de método e informa ao objeto qual ou quais tarefas devem ser executadas.

Até aqui nós usamos a analogia do carro para introduzir classes, objetos e métodos. Já é hora de saber que um carro possui atributos (propriedades) tais como cor, o número de portas, a quantidade de gasolina em seu tanque, a velocidade atual, etc. Tais atributos são representados como parte do projeto do carro. Quando o estamos dirigindo, estes atributos estão sempre associados ao carro que estamos usando, e cada carro construído a partir do projeto sofrerá variações nos valores destes atributos em um determinado momento. Da mesma forma, um objeto tem atributos associados a ele quando o usamos em um programa. Estes atributos são definidos na classe a partir da qual o objeto é instanciado (criado) e são chamados de variáveis de instância da classe.

Veremos agora como definir uma classe em Python e usar um objeto desta classe em um programa. Veja o trecho de código abaixo:

# Definição da classe Cliente 
class Cliente:
  "Minha primeira classe Python"
  # define a propriedade nome
  _nome = None
 
  # um método que permite definir o nome do cliente
  def definir_nome(self, nome):
    self._nome = nome
 
  # um método que permite obter o nome do cliente
  def obter_nome(self):
    return self._nome
# Fim da definição da classe Cliente
 
def main():
  # Cria uma instância da classe Cliente
  cliente = Cliente()
 
  # Define o nome do cliente
  cliente.definir_nome("Osmar J. Silva")
 
  # Obtém o nome do cliente
  print(cliente.obter_nome())

if __name__== "__main__":
  main()

Em mais dicas dessa seção você aprenderá mais sobre a programação orientada a objeto em Python.


PHP ::: PHP + MySQL ::: MySQL (mysql)

Como criar uma tabela MySQL usando o comando CREATE TABLE e as funções mysql_query() e mysqli_query() do PHP

Quantidade de visualizações: 22643 vezes
Nesta dica mostrarei como podemos usar a função mysqli_query() do PHP para disparar uma instrução SQL CREATE TABLE para criar uma nova tabela na base de dados MySQL. Esta dica foi atualizada. Removi a função mysql_query(), já que esta não funciona mais nas versões atuais do PHP. Em seu lugar eu coloquei mysqli_query() e ajustei o código.

Note que inclui neste exemplo o código para efetuar a conexão PHP + MySQL usando a função mysqli_connect(). Novamente vale lembrar que removi a função mysql_connect() e deixei apenas a versão mais atual.

Se você pretende escrever seu primeiro CRUD PHP + MySQL, este é o exemplo ideal para você começar. Veja o código completo:

<?php
  // vamos efetuar a conexao com o banco
  $servidor = "localhost";
  $usuario = "root";
  $senha = "osmar1234";
  $base_dados = "estudos";
  $conexao = mysqli_connect($servidor, $usuario,
    $senha, $base_dados); 
  
  // Comando SQL para criar a tabela
  $sql = "CREATE TABLE my2_usuarios(
    id int(11) NOT NULL auto_increment, 
    usuario varchar(50),
    senha varchar(10),
    data_cadastro datetime,
    PRIMARY KEY(id)
  )";
   
  // Executa o comando SQL
  $result = mysqli_query($conexao, $sql);
   
  // Verifica se o comando foi executado com sucesso
  if(!$result){
    die("Falha ao executar o comando: " . mysqli_error($conexao));
  }
  else{
    echo "Comando executado com sucesso.";
  }
   
  // fecha a conexão
  mysqli_close($conexao);
?>



Java ::: Coleções (Collections) ::: ArrayList

Como adicionar todos os elementos de uma ArrayList ou coleção à uma outra ArrayList do Java usando o método addAll()

Quantidade de visualizações: 15835 vezes
Em algumas situações pode ser necessário adicionar todos os elementos de uma ArrayList ou outra coleção a uma determinada ArrayList já existente. Isso pode ser feito por meio do uso do método addAll() da classe ArrayList. Na versão 1.5 do Java, este método possui duas assinaturas. Veja a primeira:

public boolean addAll(Collection<? extends E> c)


Aqui nós podemos adicionar à uma ArrayList existente todos os elementos de uma determinada coleção, desde que, é claro, esta coleção implemente ou descenda de alguma classe que implemente a interface Collection. Note também o uso de genéricos na coleção a ser fornecida como argumento. É importante observar que, se passarmos uma coleção de tipos diferentes daquela na qual estamos chamando o método addAll() teremos um erro de compilação.

Veja um exemplo no qual adicionamos todos os elementos de uma ArrayList no final de outra:

import java.util.ArrayList;

public class Estudos{
  public static void main(String[] args){
    // cria uma ArrayList que conterá strings
    ArrayList<String> nomes = new ArrayList<String>();

    // cria uma segunda ArrayList que conterá mais strings
    ArrayList<String> nomes2 = new ArrayList<String>();
    
    // adiciona itens na primeira lista
    nomes.add("Carlos");
    nomes.add("Maria");
    nomes.add("Fernanda");
    
    // adiciona itens na segunda lista
    nomes2.add("Osmar");
    nomes2.add("Zacarias");    
	
    // vamos adicionar os elementos da segunda lista
    // no final da primeira lista
    nomes.addAll(nomes2);

    // vamos exibir o resultado
    for(int i = 0; i < nomes.size(); i++){
      System.out.println(nomes.get(i));
    } 

    System.exit(0);
  }
}

A segunda assinatura do método addAll() nos permite definir a posição no ArrayList alvo a partir da qual os elementos da coleção fonte serão adicionados. Veja:

public boolean addAll(int index, Collection<? extends E> c)

Eis um exemplo no qual inserimos os elementos de uma ArrayList a partir do segundo elemento da ArrayList alvo. Note que os itens existentes têm suas posições alteradas de forma a acomodar os novos elementos:

import java.util.ArrayList;

public class Estudos{
  public static void main(String[] args){
    // cria uma ArrayList que conterá strings
    ArrayList<String> nomes = new ArrayList<String>();

    // cria uma segunda ArrayList que conterá mais strings
    ArrayList<String> nomes2 = new ArrayList<String>();
    
    // adiciona itens na primeira lista
    nomes.add("Carlos");
    nomes.add("Maria");
    nomes.add("Fernanda");
    
    // adiciona itens na segunda lista
    nomes2.add("Osmar");
    nomes2.add("Zacarias");    
	
    // vamos adicionar os elementos da segunda lista
    // a partir do segundo elemento da primeira lista
    nomes.addAll(1, nomes2);

    // vamos exibir o resultado
    for(int i = 0; i < nomes.size(); i++){
      System.out.println(nomes.get(i));
    } 

    System.exit(0);
  }
}

Como resultado da execução deste código nós teremos:

Carlos
Osmar
Zacarias
Maria
Fernanda



Java ::: Desafios e Lista de Exercícios Resolvidos ::: Recursão (Recursividade)

Exercícios Resolvidos de Java - Como resolver o problema da Torre de Hanói recursivamente

Quantidade de visualizações: 3098 vezes
Pergunta/Tarefa:

Torre de Hanói, ou The Towers of Hanoi, é um "quebra-cabeça" que consiste em uma base contendo três pinos, em um dos quais são dispostos alguns discos uns sobre os outros, em ordem crescente de diâmetro, de cima para baixo. O problema consiste em passar todos os discos de um pino para outro qualquer, usando um dos pinos como auxiliar, de maneira que um disco maior nunca fique em cima de outro menor em nenhuma situação. O número de discos pode variar sendo que o mais simples contém apenas três.

A solução da Torre de Hanói (The Towers of Hanoi) pode ser feita recursivamente da seguinte forma:

O caso base (parada da recursão) é quando n = 1. Se n = 1 nós podemos simplesmente mover o disco de A para B, sem precisar passar pelo pino C. Quando n > 1 nós podemos dividir o problema original em três sub-problemas e resolvê-los sequencialmente.

1) Mova os primeiros n - 1 discos de A para C com a ajuda do pino B;
2) Mova o disco n de A para B;
3) Mova n - 1 discos do pino C para o pino B com a ajuda do pino A.

Além de resolver o problema, seu programa deverá informar quantas chamadas recursivas foram feitas. Sua saída deverá ser parecida com:



Resposta/Solução:

Veja a resolução comentada deste exercício usando Java console:

package arquivodecodigos;

import java.util.Scanner;
 
public class Estudos {
  static int quantChamadasRecursivas = 0; // registra as chamadas recursivas  
     
  public static void main(String[] args) {
    Scanner entrada = new Scanner(System.in);
       
    // vamos ler a quantidade de discos a serem usados na simulação
    System.out.print("Informe a quantidade de discos: ");
    int discos = Integer.parseInt(entrada.nextLine());
 
    // resolve o problema recusivamente
    System.out.println("\nOs movimentos para resolver o problema foram:\n");
    moverDiscos(discos, 'A', 'B', 'C');
    System.out.println("\nForam feitas " + quantChamadasRecursivas + 
      " chamadas recursivas");
    System.out.println();
  }
   
  // método recursivo que resolve o problema da Torre de Hanói
  public static void moverDiscos(int n, char daTorre, char paraTorre, 
    char torreAux) {
    quantChamadasRecursivas++; // registra mais uma chamada recursiva
       
    if(n == 1){ // condição de parada
      System.out.println("Movendo o disco " + n + " de " + daTorre + " para " + 
        paraTorre);
    }
    else{ // faz mais uma chamada recursiva
      moverDiscos(n - 1, daTorre, torreAux, paraTorre);
      System.out.println("Movendo o disco " + n + " de " + daTorre + " para " + 
        paraTorre);
      moverDiscos(n - 1, torreAux, paraTorre, daTorre);
    }
  }
}



LISP ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas

Como calcular a área de um círculo em LISP dado o raio do círculo

Quantidade de visualizações: 1299 vezes
A área de um círculo pode ser calculada por meio do produto entre a constante PI e a medida do raio ao quadrado (r2). Comece analisando a figura abaixo:



Sendo assim, temos a seguinte fórmula:



Onde A é a área, PI equivale a 3,14 (aproximadamente) e r é o raio do círculo.

O raio é a medida que vai do centro até um ponto da extremidade do círculo. O diâmetro é a medida equivalente ao dobro da medida do raio, passando pelo centro do círculo e dividindo-o em duas partes. A medida do diâmetro é 2 * Raio.

Veja agora um código Common Lisp completo que calcula a área de um círculo mediante a informação do raio:

; Vamos definir as variáveis que vamos
; usar no programa
(defvar raio)
(defvar area)

; Este o programa principal
(defun AreaCirculo()
  ; Vamos ler o raio do círculo
  (princ "Informe o raio do círculo: ")
  ; talvez o seu compilador não precise disso
  (force-output)
  ; atribui o valor lido à variável raio
  (setq raio (read))
  
  ; calcula a área do círculo
  (setq area (* pi (expt raio 2)))
  
  ; E mostramos o resultado
  (format t "A área do círculo de raio ~F é ~F" raio
    area)
)

; Auto-executa a função AreaCirculo()
(AreaCirculo)

Ao executarmos este código nós teremos o seguinte resultado:

Informe o raio do círculo: 5
A area do círculo de raio 5 é igual a 78.539816

A circunferência é um conjunto de pontos que estão a uma mesma distância do centro. Essa distância é conhecida como raio. A circunferência é estudada pela Geometria Analítica e, em geral, em um plano cartesiano. O círculo, que é formado pela circunferência e pelos infinitos pontos que preenchem seu interior, é estudado pela Geometria Plana, pois ele ocupa um espaço e pode ter sua área calculada, diferentemente da circunferência.


Veja mais Dicas e truques de LISP

Dicas e truques de outras linguagens

E-Books em PDF

E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby


E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser. Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 19,90


© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 94 usuários muito felizes estudando em nosso site.