Você está aqui: Cards de Cards de Hidrologia |
||
|
||
|
|
||
C# ::: Namespace System.Drawing ::: Graphics |
Computação gráfica C# Windows Forms - Como desenhar em C# - A classe GraphicsQuantidade de visualizações: 8312 vezes |
|
Qualquer um que queira iniciar os estudos e desenhos de gráficos em C# usando Windows Forms deve obrigatoriamente entender um pouco de GDI e GDI+. GDI é o acrônimo de Graphics Device Interface e GDI+ é o seu sucessor em versões mais recentes do Microsoft Windows. Com a indepedência do GDI+ podemos desenhar em um formulário, na tela ou impressora sem qualquer modificação no código. O próprio GDI+ se encarrega dos detalhes da implementação de cada um destes diferentes dispositivos. O GDI+ é uma interface de programação de aplicações (API) que forma o sub-sistema do sistema operacional Microsoft Windows XP. Esta API é a responsável pela exibição de informações na tela e impressoras. O GDI+ é uma DLL Win32 chamada de gdiplus.dll que é distribuída com o Windows XP e versões mais recentes do Windows. Esta DLL está também disponível para uso em versões do Windows anteriores ao XP. A plataforma .NET encapsula as funcionalidades do GDI+ nos seguintes namespaces: System.Drawing, System.Drawing.Drawing2D, System.Drawing.Imaging, System.Drawing.Text e System.Drawing.Printing. Antes de iniciar seus desenhos em C# e Windows Forms, é importante entender o sistema de coordenadas do GDI+. Este sistema usa a medida de pixels ("picture elements"), que é a menor unidade de resolução no display de um monitor. Assim, o canto superior esquerdo de um controle GUI (um formulário, um painel, botão, etc) tem as coordenadas (0, 0), ou seja, x = 0 e y = 0. Lembre-se de que x é o eixo horizontal e y é o eixo vertical. A classe Graphics, do pacote System.Drawing, é quem fornece boa parte dos métodos que usamos para desenhar em C# e Windows Forms. Veja sua posição na hierarquia de classes da plataforma .NET:
System.Object
System.MarshalByRefObject
System.Drawing.Graphics
Veja um trecho de código no qual desenhamos uma linha horizontal no formulário a partir do clique de um botão:
private void button1_Click(object sender, EventArgs e){
// vamos obter o Graphics do formulário
Graphics g = this.CreateGraphics();
// vamos desenhar uma linha horizontal de 300 pixels na
// cor preta e espessura de 1 pixel
g.DrawLine(new Pen(Color.Black, 1), new Point(20, 80),
new Point(320, 80));
// vamos liberar o objeto Graphics
g.Dispose();
}
|
Java ::: Dicas & Truques ::: Expressões Regulares |
Como usar expressões regulares em Java - Expressões regulares para iniciantesQuantidade de visualizações: 49049 vezes |
|
O suporte a expressões regulares ou regex tem sido parte da plataforma Java desde a versão 1.4. Contidas no pacote java.util.regex, as classes regex suportam a comparação de padrões de forma similar à linguagem Perl, mas, usando classes e a sintáxe da linguagem Java. Todo o pacote se limita a três classes: Pattern, Matcher e PatternSyntaxException. A versão 1.5 introduziu a interface MatchResult. Use as duas classes Pattern e Matcher juntas. Defina e expressão regular com a classe Pattern. Então use a classe Matcher para verificar o padrão em relação à fonte de entrada. Uma exceção é lançada quando o padrão tem um erro de sintáxe na expressão. Estas classes não possuem construtores. Em vez disso, compilamos uma expressão regular para obter um padrão, e então usamos o Pattern retornado para obter seu Matcher baseado na fonte de entrada: Pattern pattern = Pattern.compile(<regular expression>); Matcher matcher = pattern.matcher(<input source>); Uma vez que tenhamos um Matcher, tipicamente processamos a fonte de entrada a fim de encontrarmos as similaridades contidas. Usa-se o método find() para localizar similaridades do padrão na fonte de entrada. Cada chamada a find() continua a partir do ponto onde a última chamada parou, ou na posição 0 para a primeira chamada. As similaridades encontradas são retornadas pelo método group():
while(matcher.find()){
System.out.printf"Found: \"%s\" from %d to %d.%n",
matcher.group(), matcher.start(), matcher.end());
}
O código a seguir mostra um programa básico de expressões regulares, que pede ao usuário que informe tanto a expressão regular quanto a string que será comparada:
import java.util.regex.*;
import java.io.*;
public class Regex{
public static void main(String args[]){
Console console = System.console();
// Obtém a expressão regular
String regex = console.readLine("%nInforme a expressão: ");
Pattern pattern = Pattern.compile(regex);
// Obtém a entrada
String source = console.readLine("Informe a entrada: ");
Matcher matcher = pattern.matcher(source);
// Mostra as similaridades
while(matcher.find()){
System.out.printf("Encontrado: \"%s\" de %d à %d.%n",
matcher.group(), matcher.start(), matcher.end());
}
}
}
Mas, o que realmente é uma expressão regular? A classe Pattern fornece detalhes mais profundos, mas, basicamente uma expressão regular é uma sequência de caracteres que tenta encontrar semelhanças em outra sequencia de caracteres. Por exemplo, podemos procurar o padrão literal de "eles" duplos "ll" na string "Hello, World". O programa anterior encontraria o padrão "ll" começando na posição 2 e terminando na posição 4. A posição final é a posição do próximo caractere depois do fim do padrão de semelhança. Strings de padrão como "ll" não são muito interessantes, relatando somente onde elas estão literalmente na fonte de entrada. Padrões de expressões regulares podem incluir meta-caracteres especiais. Meta-caracteres fornecem habilidades poderosas de comparação. É possível usar os 15 caracteres "([{\^-$|]})?*+." como meta-caracteres em expressões regulares. Alguns meta-caracteres indicam o agrupamento de caracteres. Por exemplo, os caracteres de colchetes [ e ] permitem especificar um grupo de caracteres nos quais uma similaridade ocorre se qualquer um dos caracteres entre colchetes for encontrado no texto. Por exemplo, o padrão "co[cl]a" retornará similaridade com "coca" e "cola". Ele não se igualará a "cocla", uma vez que [] é usado para igualar apenas um caractere. Veremos mais sobre quantificadores mais adiante, quando quisermos encontrar alguma coisa múltiplas vezes. Além de tentar encontrar caracteres individuais, podemos usar os colchetes [ e ] para igualar uma faixa de caracteres, tais como as letras de j-z, definidas como [j-z]. Isso pode também ser combinado com um literal string, como em "foo[j-z]" que encontraria "fool", mas não encontraria "food", uma vez que l está na faixa de j à z e d não está. Podemos também usar o caractere ^ para representar negação, com um literal string ou uma faixa. O padrão "foo[^j-z]" encontrará palavras que começam como foo mas que não terminem com uma letra de j à z. Assim a string food agora seria encontrada. Faixas múltiplas podem ser combinadas como em [a-zA-Z] para informar as letras de a à z maiúsculas ou minúsculas. Enquanto literais strings são ótimos como primeira lição sobre expressões regulares, as coisas mais típicas que a maioria das pessoas usam em expressões regulares são as classes de caracteres pré-definidos. É aqui que os meta-caracteres . e \ são importantes. O ponto . é usado para representar qualquer caractere. Assim, a expressão regular ".oney" encontraria money e honey, e qualquer outro conjunto de 5 caracteres que terminem em oney. O caractere \ por sua vez, é usado com outros caracteres para representar um conjunto completo de letras. Por exemplo, enquanto podemos usar [0-9] para representar um conjunto de dígitos, podemos também usar \d. Podemos ainda usar [^0-9] para representar um conjunto de caracteres que não sejam dígitos. Ou podemos usar o caractere \D. Todas estas strings de classes de caracteres são definidas na documentação da plataforma Java para a classe Pattern, uma vez que elas não são fáceis de serem lembradas. Eis aqui um sub-conjunto de algumas classes de caracteres pré-definidos especiais:
* \s -- whitespace (espaço em branco)
* \S -- non-whitespace (não seja espaço em branco)
* \w -- word character [a-zA-Z0-9] (caractere de palavra)
* \W -- non-word character (não caractere de palavra)
* \p{Punct} -- punctuation (pontuação)
* \p{Lower} -- lowercase [a-z] (minúsculas)
* \p{Upper} -- uppercase [A-Z] (maiúsculas)
Se você quiser usar uma destas strings no programa Regex mostrado acima, você as define como mostrado. \s se iguala ao espaço em branco. Se, contudo, você quiser definir a expressão regular via código, você precisa se lembrar que o caractere \ tem tratamento especial. Devemos escapar a string no código fonte: String regexString = "\\s"; Aqui, os caracteres \\ representam uma única barra invertida na string. Há outras strings especiais para representar literais strings: * \t -- tab (tabulação) * \n -- newline (nova linha) * \r -- carriage return (retorno de carro) * \xhh -- hex character 0xhh (caractere hexadecimal) * \uhhhh -- hex character 0xhhhh (caractere hexadecimal) Os quantificadores tornam as expressões regulares mais interessantes, pelo menos quando combinados com outras expresssões tais como classes de caracteres. Por exemplo, se quisermos encontrar uma string de três caracteres de a-z, poderíamos usar o padrão "[a-z][a-z][a-z]". Mas não precisamos fazer isso. Em vez de repetir a string, adicionamos um quantificador após o padrão. Para este exemplo específico, "[a-z][a-z][a-z]" pode ser representado como "[a-z]{3}". Para uma quantidade específica, o número vai dentro das chaves {}. Podemos também usar ?, * ou + para representar zero ou uma vez, zero ou mais vezes, ou uma ou mais vezes, respectivamente. O padrão [a-z]? encontra um caractere de a-z zero ou uma vez. O padrão [a-z]* encontra um caractere de a-z zero ou mais vezes. O padrão [a-z]+ encontra um caractere de a-z uma ou mais vezes. Use quantificador com cuidado, prestando muita atenção aos quantificadores que permitem zero similaridades. Quando usamos as chaves {} como quantificadores, devemos definir uma faixa. {3} significa exatamente 3 vezes, mas poderíamos dizer {3,}, que define no mínimo três vezes. O quantificador {3,5} encontra um padrão de 3 a 5 vezes. Há mais sobre expressões regulares que o que mostramos aqui. A arte de usá-las envolve descobrir a expressão regular correta para a situação atual. Tente diferente expressões com o programa Regex e veja se ele encontra o que você está esperando. Certifique-se de tentar diferentes quantificadores para entender realmente suas diferenças. Observe que quantificadores geralmente tentam incluir o maior número de caracteres para uma similaridade possível. |
PHP ::: Dicas & Truques ::: Strings e Caracteres |
PHP para iniciantes - Como obter o comprimento (tamanho) de uma string usando a função strlen() do PHPQuantidade de visualizações: 1 vezes |
|
Nesta dica eu mostro como é possível usar a função strlen() da linguagem PHP para contar, ou seja, obter a quantidade de caracteres em uma palavra, frase ou texto. Veja o código completo a seguir:
<html>
<head>
<title>Estudando PHP</title>
</head>
<body>
<?php
// obtém o comprimento (tamanho) de uma string
$string = "Bom dia";
echo "Esta string possui " . strlen($string) .
" caracteres";
?>
</body>
</html>
Ao executar este código nós teremos o seguinte resultado: Esta string possui 7 caracteres |
C++ ::: Dicas & Truques ::: Strings e Caracteres |
Como pesquisar uma substring em uma string C++ usando o método find() e retornar o índice do primeiro caractereQuantidade de visualizações: 10595 vezes |
|
Nesta dica mostrarei como podemos usar a função find() da classe String do C++ para pesquisar parte de uma palavra, frase ou texto. Se a substring for encontrada, o índice do seu primeiro caractere é retornado. Caso contrário o valor npos é retornado. Veja o código C++ completo para o exemplo:
#include <string>
#include <iostream>
using namespace std;
int main(int argc, char *argv[]){
// vamos criar uma string
string frase = "Gosto de Java e C++";
cout << "A string informada foi: " << frase << endl;
// agora vamos checar a existência da substring
size_t pos = frase.find("Java");
// a substring foi encontrada?
if(pos == string::npos){
cout << "A substring nao foi encontrada." << endl;
}
else{
cout << "A substring foi encontrada" <<
" no indice " << pos << endl;
}
system("PAUSE"); // pausa o programa
return EXIT_SUCCESS;
}
Ao executar este código C++ nós teremos o seguinte resultado: A string informada foi: Gosto de Java e C++ A substring foi encontrada no indice 9 |
Java ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas |
Como calcular o ponto médio entre dois pontos no plano usando Java - Geometria com JavaQuantidade de visualizações: 3554 vezes |
|
Nesta dica mostrarei como é possível usar um trecho de código Java para obter o ponto médio entre dois pontos quaisquer no plano, ou seja, no R2. Em mais dicas dessa seção você aprenderá como isso pode ser feito no R3 (espaço) Comece analisando a figura abaixo, na qual temos dois pontos A e B, com suas coordenadas correspondentes, e o ponto médio M: ![]() Assim, dados dois pontos A = (2, 9) e B = (10, 2) no plano cartesiano R2, as coordenadas x e y do ponto médio são calculadas por meio da seguinte fórmula: \[x = \frac{x_1 + x_2}{2}\] \[y = \frac{y_1 + y_2}{2}\] Colocando na fórmula os valores que já temos: \[x = \frac{2 + 10}{2} = \frac{12}{2} = 6 \] \[y = \frac{9 + 2}{2} = \frac{11}{2} = 5.5 \] Assim, as coordenadas do ponto médio será (x = 6, y = 5.5). E agora veja o código Java completo para calcular as coordenadas do ponto médio a partir de dois pontos no plano cartesiano (plano 2D ou R2):
package arquivodecodigos;
import java.util.Scanner;
public class Estudos{
public static void main(String[] args){
Scanner entrada = new Scanner(System.in);
// x e y do primeiro ponto
System.out.print("Coordenada x do primeiro ponto: ");
float x1 = Float.parseFloat(entrada.nextLine());
System.out.print("Coordenada y do primeiro ponto: ");
float y1 = Float.parseFloat(entrada.nextLine());
// x e y do segundo ponto
System.out.print("Coordenada x do segundo ponto: ");
float x2 = Float.parseFloat(entrada.nextLine());
System.out.print("Coordenada y do segundo ponto: ");
float y2 = Float.parseFloat(entrada.nextLine());
// vamos calcular as coordenadas x e y do ponto médio
float x = (x1 + x2) / 2;
float y = (y1 + y2) / 2;
// vamos mostrar o resultado
System.out.println("As coordenadas do ponto médio são: (x = " +
x + ", y = " + y + ")");
}
}
Ao executarmos este código Java nós teremos o seguinte resultado: Coordenada x do primeiro ponto: 2 Coordenada y do primeiro ponto: 9 Coordenada x do segundo ponto: 10 Coordenada y do segundo ponto: 2 As coordenadas do ponto médio são: (x = 6.0, y = 5.5) |
Desafios, Exercícios e Algoritmos Resolvidos de Java |
Veja mais Dicas e truques de Java |
Dicas e truques de outras linguagens |
|
Java - Estruturas de dados em Java - Como obter a quantidade de nós em uma árvore binária usando Java |
E-Books em PDF |
||||
|
||||
|
||||
Linguagens Mais Populares |
||||
|
1º lugar: Java |






