Você está aqui: Cards de Cards de Hidrologia |
||
|
||
|
|
||
Java ::: Estruturas de Dados ::: Árvore Binária e Árvore Binária de Busca |
Estruturas de dados em Java - Como pesquisar um nó em uma árvore binária de busca usando um método recursivo usando JavaQuantidade de visualizações: 2764 vezes |
|
Nesta dica mostraremos um exemplo completo de como pesquisar um valor em uma árvore binária de busca em Java. Note que o exemplo usa apenas inteiros, mas você não terá dificuldades para modificar a classe Nó para os dados que você precisar. Código para No.java:
package arvore_binaria;
public class No {
private int valor; // valor armazenado no nó
private No esquerdo; // filho esquerdo
private No direito; // filho direito
// construtor do nó
public No(int valor){
this.valor = valor;
this.esquerdo = null;
this.direito = null;
}
public int getValor() {
return valor;
}
public void setValor(int valor) {
this.valor = valor;
}
public No getEsquerdo() {
return esquerdo;
}
public void setEsquerdo(No esquerdo) {
this.esquerdo = esquerdo;
}
public No getDireito() {
return direito;
}
public void setDireito(No direito) {
this.direito = direito;
}
}
Código para ArvoreBinariaBusca.java:
package arvore_binaria;
public class ArvoreBinariaBusca {
private No raiz; // referência para a raiz da árvore
// método usado para inserir um novo nó na árvore
// retorna true se o nó for inserido com sucesso e false
// se o elemento
// não puder ser inserido (no caso de já existir um
// elemento igual)
public boolean inserir(int valor){
// a árvore ainda está vazia?
if(raiz == null){
// vamos criar o primeiro nó e definí-lo como a raiz da árvore
raiz = new No(valor); // cria um novo nó
}
else{
// localiza o nó pai do novo nó
No pai = null;
No noAtual = raiz; // começa a busca pela raiz
// enquanto o nó atual for diferente de null
while(noAtual != null){
// o valor sendo inserido é menor que o nó atual?
if(valor < noAtual.getValor()) {
pai = noAtual;
// vamos inserir do lado esquerdo
noAtual = noAtual.getEsquerdo();
}
// o valor sendo inserido é maior que o nó atual
else if(valor > noAtual.getValor()){
pai = noAtual;
// vamos inserir do lado direito
noAtual = noAtual.getDireito();
}
else{
return false; // um nó com este valor foi encontrado
}
}
// cria o novo nó e o adiciona como filho do nó pai
if(valor < pai.getValor()){
pai.setEsquerdo(new No(valor));
}
else{
pai.setDireito(new No(valor));
}
}
return true; // retorna true para indicar que o novo nó foi inserido
}
// método que permite pesquisar na árvore binária de busca
public No pesquisar(int valor){
return pesquisar(raiz, valor); // chama a versão recursiva do método
}
// sobrecarga do método pesquisar que recebe dois
// parâmetros (esta é a versão recursiva do método)
private No pesquisar(No noAtual, int valor){
// o valor pesquisado não foi encontrado....vamos retornar null
if(noAtual == null){
return null;
}
// o valor pesquisado foi encontrado?
if(valor == noAtual.getValor()){
return noAtual; // retorna o nó atual
}
// ainda não encontramos...vamos disparar uma nova
// chamada para a sub-árvore da esquerda
else if(valor < noAtual.getValor()){
return pesquisar(noAtual.getEsquerdo(), valor);
}
// ainda não encontramos...vamos disparar uma nova
// chamada para a sub-árvore da direita
else{
return pesquisar(noAtual.getDireito(), valor);
}
}
}
E finalmente o código para a classe principal:
package arvore_binaria;
import java.util.Scanner;
public class ArvoreBinariaTeste {
public static void main(String[] args) {
Scanner entrada = new Scanner(System.in);
// vamos criar um novo objeto da classe ArvoreBinariaBusca
ArvoreBinariaBusca arvore = new ArvoreBinariaBusca();
// vamos inserir 5 valores na árvore
for(int i = 0; i < 5; i++){
System.out.print("Informe um valor inteiro: ");
int valor = Integer.parseInt(entrada.nextLine());
// vamos inserir o nó e verificar o sucesso da operação
if(!arvore.inserir(valor)){
System.out.println("Não foi possível inserir." +
" Um elemento já contém este valor.");
}
}
// vamos pesquisar um valor na árvore
System.out.print("\nInforme o valor a ser pesquisado: ");
int valorPesquisa = Integer.parseInt(entrada.nextLine());
// obtém um objeto da classe NoArvore a partir do
// método pesquisar() da classe ArvoreBinariaBusca
No res = arvore.pesquisar(valorPesquisa);
// o valor foi encontrado?
if(res != null){
System.out.println("O valor foi encontrado na árvore");
}
else{
System.out.println("O valor não foi encontrado na árvore");
}
System.out.println("\n");
}
}
|
Python ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas |
Como calcular a equação reduzida da reta em Python dados dois pontos pertencentes à retaQuantidade de visualizações: 3567 vezes |
|
Nesta dica de Python veremos como calcular a equação reduzida da reta quando temos dois pontos pertencentes à esta reta. Não, nessa dica não vamos calcular a equação geral da reta, apenas a equação reduzida. Em outras dicas do site você encontra como como isso pode ser feito. Para relembrar: a equação reduzida da reta é y = mx + n, em que x e y são, respectivamente, a variável independente e a variável dependente; m é o coeficiente angular, e n é o coeficiente linear. Além disso, m e n são números reais. Com a equação reduzida da reta, é possível calcular quais são os pontos que pertencem a essa reta e quais não pertencem. Vamos começar então analisando a seguinte figura, na qual temos dois pontos que pertencem à uma reta: ![]() Note que a reta da figura passa pelos pontos A(5, 5) e B(9, 2). Então, uma vez que já temos os dois pontos, já podemos calcular a equação reduzida da reta. Veja o código Python completo para esta tarefa:
# método principal
def main():
# vamos ler as coordenadas do primeiro ponto
x1 = float(input("Coordenada x do primeiro ponto: "))
y1 = float(input("Coordenada y do primeiro ponto: "))
# vamos ler as coordenadas do segundo ponto
x2 = float(input("Coordenada x do segundo ponto: "))
y2 = float(input("Coordenada y do segundo ponto: "))
sinal = "+"
# vamos calcular o coeficiente angular da reta
m = (y2 - y1) / (x2 - x1)
# vamos calcular o coeficiente linear
n = y1 - (m * x1)
# coeficiente linear menor que zero? O sinal será negativo
if (n < 0):
sinal = "-"
n = n * -1
# mostra a equação reduzida da reta
print("Equação reduzida: y = %.2fx %s %.2f" % (m, sinal, n))
if __name__== "__main__":
main()
Ao executar este código Python nós teremos o seguinte resultado: Coordenada x do primeiro ponto: 5 Coordenada y do primeiro ponto: 5 Coordenada x do segundo ponto: 9 Coordenada y do segundo ponto: 2 Equação reduzida: y = -0,75x + 8,75 Para testarmos se nossa equação reduzida da reta está realmente correta, considere o valor 3 para o eixo x da imagem acima. Ao efetuarmos o cálculo: >> y = (-0.75 * 3) + 8.75 y = 6.5000 temos o valor 6.5 para o eixo y, o que faz com que o novo ponto caia exatamente em cima da reta considerada na imagem. |
LISP ::: Dicas & Truques ::: Strings e Caracteres |
Como retornar uma substring de uma string em LISP usando a função subseq()Quantidade de visualizações: 709 vezes |
|
Nesta dica mostrarei como podemos extrair uma parte de uma palavra, frase ou texto, ou seja, vamos obter uma substring a partir de uma string. Na linguagem LISP isso pode ser feito por meio da função subseq(). Esta função aceita 3 argumentos. O primeiro argumento é a string a partir da qual a substring será extraída. O segundo argumento é o índice inicial da substring, começando sempre em 0. O terceiro argumento marca o índice final da substring (um índice a mais que o último caractere desejado). Se o terceiro argumento for omitido, todo o restante da string será incluído na substring. Veja o código LISP completo para o exemplo no qual pedimos para o usuário informar uma frase e extraímos dessa frase os 5 primeiros caracteres: ; variáveis que vamos usar no programa (let ((frase)(substring)) ; Vamos pedir para o usuário informar ; uma frase (princ "Informe uma frase: ") ; talvez o seu compilador não precise disso (force-output) ; atribui o valor lido à variável frase (setq frase (read-line)) ; vamos mostrar a frase informada ; o símbolo ~% provoca uma quebra de linha (format t "A frase informada foi: ~S~%" frase) ; agora vamos obter os 5 primeiros caracteres (setq substring (subseq frase 0 5)) ; e mostramos a substring (format t "A substring obtida foi: ~S" substring) ) Ao executar este código LISP nós teremos o seguinte resultado: A frase informada foi: "Estudar LISP é bom demais" A substring obtida foi: "Estud" |
C ::: Dicas & Truques ::: Strings e Caracteres |
Como escrever uma função strtoupper() em C para transformar uma palavra inteira em letras maiúsculasQuantidade de visualizações: 9224 vezes |
|
A linguagem C padrão não possui uma função para transformar todas as letras de uma palavra, frase ou texto em maiúsculas, embora alguns compiladores a forneça. O que temos em C padrão é a função: int toupper(int c); maiúsculo. Podemos tirar vantagem disso e escrever uma função strtoupper(). Veja a listagem logo abaixo (uma boa oportunidade para praticar ponteiros em C):
#include <stdio.h>
#include <stdlib.h>
void strtoupper(char *string){
while(*string){
*string = toupper(*string);
string++;
}
}
int main(int argc, char *argv[])
{
char frase[] = "Programando em C";
printf("Frase normal: %s\n", frase);
strtoupper(frase);
printf("Em letras maiusculas: %s\n\n", frase);
system("PAUSE");
return 0;
}
Ao executar este código C nós teremos o seguinte resultado: Frase normal: Programando em C Em letras maiusculas: PROGRAMANDO EM C |
C++ ::: STL (Standard Template Library) ::: Vector C++ |
Como excluir todos os elementos de um vector C++ usando a função clear()Quantidade de visualizações: 18072 vezes |
|
Em algumas situações precisamos remover todos os elementos de um vector. Para isso podemos usar a função clear(). Esta função não requer nenhum argumento e possui retorno void. À medida que os elementos vão sendo removidos, seus destrutores são chamados (no caso de os elementos no vector serem referências e não tipos primitivos). Veja o código C++ completo para o exemplo:
#include <iostream>
#include <vector>
using namespace std;
int main(int argc, char *argv[]){
// um vector vazio que conterá inteiros
vector<int> valores;
// vamos inserir três elementos
valores.push_back(54);
valores.push_back(13);
valores.push_back(87);
// vamos obter a quantidade de elementos no vector
cout << "Quantidade de elementos: " << valores.size() << endl;
// vamos remover todos os elementos, ou seja, limpar o vector
valores.clear();
// vamos obter a quantidade de elementos no vector novamente
cout << "Quantidade de elementos: " << valores.size() << endl;
system("PAUSE"); // pausa o programa
return EXIT_SUCCESS;
}
Ao executar este código C++ nós teremos o seguinte resultado: Quantidade de elementos: 3 Quantidade de elementos: 0 |
Desafios, Exercícios e Algoritmos Resolvidos de C++ |
Veja mais Dicas e truques de C++ |
Dicas e truques de outras linguagens |
E-Books em PDF |
||||
|
||||
|
||||
Linguagens Mais Populares |
||||
|
1º lugar: Java |





