Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD e VBA
PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO

Você está aqui: Cards de Engenharia Civil - Fundações
Card 1 de 11
Fundações diretas ou rasas

As fundações rasas ou diretas são utilizadas quando as camadas superficiais do solo apresentam resistência apropriada para receber as cargas provenientes de uma edificação.

A depender das características do solo abaixo de uma estrutura, podem ser usadas tanto fundações rasas como fundações profundas, desde que os estudos técnicos necessários sejam realizados durante a fase dos estudos preliminares.

Vale ressaltar que o uso das fundações rasas é recomendado quando o número de golpes do SPT for maior ou igual a 8 e a profundidade de assentamento não ultrapassar 2m, pois, acima desses valores, esse tipo de fundação se torna inviável técnica e economicamente.

Filtrar Cards
Use esta opção para filtrar os cards pelos tópicos que mais lhe interessam.
Termos:
Aviso Importante: Nos esforçamos muito para que o conteúdo dos cards e dos testes e conhecimento seja o mais correto possível. No entanto, entendemos que erros podem ocorrer. Caso isso aconteça, pedimos desculpas e estamos à disposição para as devidas correções. Além disso, o conteúdo aqui apresentado é fruto de conhecimento nosso e de pesquisas na internet e livros. Caso você encontre algum conteúdo que não deveria estar aqui, por favor, nos comunique pelos e-mails exibidos nas opções de contato.
Link para compartilhar na Internet ou com seus amigos:

C++ ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas

Como calcular o coeficiente angular de uma reta em C++ dados dois pontos no plano cartesiano

Quantidade de visualizações: 1574 vezes
O Coeficiente Angular de uma reta é a variação, na vertical, ou seja, no eixo y, pela variação horizontal, no eixo x. Sim, isso mesmo. O coeficiente angular de uma reta tem tudo a ver com a derivada, que nada mais é que a taxa de variação de y em relação a x.

Vamos começar analisando o seguinte gráfico, no qual temos dois pontos distintos no plano cartesiano:



Veja que o segmento de reta AB passa pelos pontos A (x=3, y=6) e B (x=9, y=10). Dessa forma, a fórmula para obtenção do coeficiente angular m dessa reta é:

\[\ \text{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tg \theta \]

Note que __$\Delta y__$ e __$\Delta x__$ são as variações dos valores no eixo das abscissas e no eixo das ordenadas. No triângulo retângulo que desenhei acima, a variação __$\Delta y__$ se refere ao comprimento do cateto oposto e a variação __$\Delta y__$ se refere ao comprimento do cateto adjascente.

Veja agora o trecho de código na linguagem C++ que solicita as coordenadas x e y dos dois pontos, efetua o cálculo e mostra o coeficiente angular m da reta que passa pelos dois pontos:

#include <iostream>
#include <cstdlib>
 
using namespace std;
 
int main(int argc, char *argv[]){
  // coordenadas dos dois pontos
  float x1, y1, x2, y2;
  // guarda o coeficiente angular
  float m; 
       
  // x e y do primeiro ponto
  cout << "Coordenada x do primeiro ponto: ";
  cin >> x1;
  cout << "Coordenada y do primeiro ponto: ";
  cin >> y1;
     
  // x e y do segundo ponto
  cout << "Coordenada x do segundo ponto: ";
  cin >> x2;
  cout << "Coordenada y do segundo ponto: ";
  cin >> y2;   
     
  // vamos calcular o coeficiente angular
  m = (y2 - y1) / (x2 - x1);
     
  // mostramos o resultado
  cout << "O coeficiente angular é: " << m << "\n\n";
   
  system("PAUSE"); // pausa o programa
  return EXIT_SUCCESS;
}

Ao executar este código C++ nós teremos o seguinte resultado:

Coordenada x do primeiro ponto: 3
Coordenada y do primeiro ponto: 6
Coordenada x do segundo ponto: 9
Coordenada y do segundo ponto: 10
O coeficiente angular é: 0.666667
Pressione qualquer tecla para continuar...

Veja agora como podemos calcular o coeficiente angular da reta que passa pelos dois pontos usando o Teorema de Pitágoras. Note que agora nós estamos tirando proveito da tangente do ângulo Theta (__$\theta__$), também chamado de ângulo Alfa ou Alpha (__$\alpha__$):

#include <iostream>
#include <cstdlib>
#include <math.h>
 
using namespace std;
 
int main(int argc, char *argv[]){
  // coordenadas dos dois pontos
  float x1, y1, x2, y2;
  // guarda os comprimentos dos catetos oposto e adjascente
  float cateto_oposto, cateto_adjascente;
  // guarda o ângulo tetha (em radianos) e a tangente
  float tetha, tangente;
       
  // x e y do primeiro ponto
  cout << "Coordenada x do primeiro ponto: ";
  cin >> x1;
  cout << "Coordenada y do primeiro ponto: ";
  cin >> y1;
     
  // x e y do segundo ponto
  cout << "Coordenada x do segundo ponto: ";
  cin >> x2;
  cout << "Coordenada y do segundo ponto: ";
  cin >> y2;   
     
  // vamos obter o comprimento do cateto oposto
  cateto_oposto = y2 - y1;
  // e agora o cateto adjascente
  cateto_adjascente = x2 - x1;
  // vamos obter o ângulo tetha, ou seja, a inclinação da hipetunesa
  // (em radianos, não se esqueça)
  tetha = atan2(cateto_oposto, cateto_adjascente);
  // e finalmente usamos a tangente desse ângulo para calcular
  // o coeficiente angular
  tangente = tan(tetha);
     
  // mostramos o resultado
  cout << "O coeficiente angular é: " << tangente << "\n\n";
   
  system("PAUSE"); // pausa o programa
  return EXIT_SUCCESS;
}

Ao executar este código você verá que o resultado é o mesmo. No entanto, fique atento às propriedades do coeficiente angular da reta:

1) O coeficiente angular é positivo quando a reta for crescente, ou seja, m > 0;

2) O coeficiente angular é negativo quando a reta for decrescente, ou seja, m < 0;

3) Se a reta estiver na horizontal, ou seja, paralela ao eixo x, seu coeficiente angular é zero (0).

4) Se a reta estiver na vertical, ou seja, paralela ao eixo y, o coeficiente angular não existe.


Java ::: Desafios e Lista de Exercícios Resolvidos ::: Java Básico

Exercícios Resolvidos de Java - Ler um número de três dígitos, separá-lo e invertê-lo, escrevendo o número lido e sua forma inversa

Quantidade de visualizações: 16391 vezes
Exercício Resolvido de Java - Ler um número de três dígitos, separá-lo e invertê-lo, escrevendo o número lido e sua forma inversa

Pergunta/Tarefa:

Escreva um programa Java console ou GUI que leia um número de 3 dígitos e o inverta, escrevendo o número lido e o invertido. Por exemplo, se o usuário informar o valor 753, seu programa deverá invertê-lo, resultando em 357. Seu programa deverá exibir a seguinte saída:

Informe um valor inteiro de três dígitos: 753
O valor original é: 753
O valor invertido é: 357
Resposta/Solução:

Veja a resolução comentada deste exercício usando Java console:

public static void main(String[] args){
  // não se esqueça de adicionar um import para a classe Scanner
  // import java.util.Scanner;

  // vamos criar um objeto da classe Scanner
  Scanner entrada = new Scanner(System.in);

  // vamos solicitar ao usuário que informe um valor inteiro
  // na faixa 100 a 999 (incluindo)
  System.out.print("Informe um valor inteiro de três dígitos: ");

  // vamos ler o valor informado
  int valor = Integer.parseInt(entrada.next());

  // vamos verificar se o valor está na faixa permitida
  if(valor < 100 || valor > 999){
    System.out.println("Valor fora da faixa permitida");
    System.exit(0);
  }

  // vamos criar uma variável temporária para manter intacto o valor lido
  int temp = valor;
  int inverso = 0; // guardará o valor invertido

  // vamos inverter o valor agora
  while(temp != 0){
    inverso = (inverso * 10) + (temp % 10);
    temp = temp / 10;
  }

  // vamos mostrar o resultado
  System.out.println("O valor original é: " + valor);
  System.out.println("O valor invertido é: " + inverso);
}



Python ::: Dicas & Truques ::: Matemática e Estatística

Como resolver uma equação do segundo grau em Python - Como calcular Bhaskara em Python

Quantidade de visualizações: 2873 vezes
Como resolver uma equação do 2º grau usando Python

Nesta dica mostrarei como encontrar as raízes de uma equação quadrática, ou seja, uma equação do 2º usando a linguagem Python.

Definimos como equação do 2º grau ou equações quadráticas qualquer equação do tipo ax² + bx + c = 0 em que a, b e c são números reais e a &#8800; 0. Ela recebe esse nome porque, no primeiro membro da igualdade, há um polinômio de grau dois com uma única incógnita.

Note que, dos coeficientes a, b e c, somente o a é diferente de zero, pois, caso ele fosse igual a zero, o termo ax² seria igual a zero, logo a equação se tornaria uma equação do primeiro grau: bx + c = 0.

Independentemente da ordem da equação, o coeficiente a sempre acompanha o termo x², o coeficiente b sempre acompanha o termo x, e o coeficiente c é sempre o termo independente.

Como resolver uma equação do 2º grau

Conhecemos como soluções ou raízes da equação ax² + bx + c = 0 os valores de x que fazem com que essa equação seja verdadeira. Uma equação do 2º grau pode ter no máximo dois números reais que sejam raízes dela. Para resolver equações do 2º grau completas, existem dois métodos mais comuns:

a) Fórmula de Bhaskara;
b) Soma e produto.

O primeiro método é bastante mecânico, o que faz com que muitos o prefiram. Já para utilizar o segundo, é necessário o conhecimento de múltiplos e divisores. Além disso, quando as soluções da equação são números quebrados, soma e produto não é uma alternativa boa.

Como resolver uma equação do 2º grau usando Bhaskara

Como nosso código Python vai resolver a equação quadrática usando a Fórmula de Bhaskara, o primeiro passo é encontrar o determinante. Veja:

\[\Delta =b^2-4ac\]

Nem sempre a equação possui solução real. O valor do determinante é que nos indica isso, existindo três possibilidades:

a) Se determinante > 0, então a equação possui duas soluções reais.
b) Se determinante = 0, então a equação possui uma única solução real.
c) Se determinante < 0, então a equação não possui solução real.

Encontrado o determinante, só precisamos substituir os valores, incluindo o determinante, na Fórmula de Bhaskara:

\[x = \dfrac{- b\pm\sqrt{b^2- 4ac}}{2a}\]

Vamos agora ao código Python. Nossa aplicação vai pedir para o usuário informar os valores dos três coeficientes a, b e c e, em seguida, vai apresentar as raizes da equação:

# importamos a bibliteca Math
import math

def main():
  # vamos pedir para o usuário informar os valores dos coeficientes
  a = float(input("Valor do coeficiente a: "))
  b = float(input("Valor do coeficiente b: "))
  c = float(input("Valor do coeficiente c: "))
  # vamos calcular o discriminante
  discriminante = (b * b) - (4 * a * c)
    
  # a equação possui duas soluções reais?
  if(discriminante > 0):
    raiz1 = (-b + math.sqrt(discriminante)) / (2 * a)
    raiz2 = (-b - math.sqrt(discriminante)) / (2 * a)
    print("Existem duas raizes: x1 = {0} e x2 = {1}".format(raiz1, raiz2))
  # a equação possui uma única solução real?
  elif(discriminante == 0):
    raiz1 = raiz2 = -b / (2 * a)
    print("Existem duas raizes iguais: x1 = {0} e x2 = {1}".format(raiz1, raiz2))  	
  # a equação não possui solução real?
  elif(discriminante < 0):
    raiz1 = raiz2 = -b / (2 * a)
    imaginaria = math.sqrt(-discriminante) / (2 * a)
    print("Existem duas raízes complexas: x1 = {0} + {1} e x2 = {2} - {3}".format( 
      raiz1, imaginaria, raiz2, imaginaria))

if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

Valor do coeficiente a: 1
Valor do coeficiente b: 2
Valor do coeficiente c: -3
Existem duas raizes: x1 = 1.0 e x2 = -3.0


Java ::: Java para Engenharia ::: Unidades de Medida

Como converter Centímetros Cúbicos em Metros Cúbicos em Java - Java para Física e Engenharia

Quantidade de visualizações: 559 vezes
Em muitas situações nós temos uma medida de volume em cm3 e queremos transformá-la em m3, que é a medida de volume do Sistema Internacional (SI). Para isso só precisamos dividir os centímetros cúbicos por 1.000.000. Veja a fórmula:

\[\text{Metros Cúbicos} = \frac{\text{Centímetros Cúbidos}}{1.000.000} \]

Agora veja o código Java que pede para o usuário informar a medida de volume em centímetros cúbicos e a converte para metros cúbicos. Note que mostrei como exibir o resultado em notação científica e sem notação científica:

package estudos;

import java.util.Scanner;

public class Estudos {
  public static void main(String[] args) {
    // para ler a entrada do usuário
    Scanner entrada = new Scanner(System.in);
    
    // vamos ler a medida em centímetros cúbicos
    System.out.print("Informe os centímetros cúbicos: ");
    double cent_cubicos = Double.parseDouble(entrada.nextLine());
    
    // agora calculamos os metros cúbicos
    double met_cubicos = cent_cubicos / 1000000.00;
    
    // e mostramos o resultado
    System.out.println("Você informou " + cent_cubicos +
      " centímetros cúbicos.");
    System.out.println("Isso equivale a " + met_cubicos +
      " metros cúbicos.");
    System.out.printf("Sem notação científica: %f\n",
      met_cubicos);
  }
}

Ao executar este código Java nós teremos o seguinte resultado:

Informe os centímetros cúbicos: 35
Você informou 35.0 centímetros cúbicos.
Isso equivale a 3.5E-5 metros cúbicos.
Sem notação científica: 0,000035


Java ::: Tratamento de Erros ::: Erros de Tempo de Execução

Como tratar o erro StringIndexOutOfBoundsException em seus programas Java - A exceção StringIndexOutOfBoundsException da linguagem Java

Quantidade de visualizações: 12294 vezes
A exceção StringIndexOutOfBoundsException é uma exceção (erro) que acontece quando fornecemos um índice fora dos limites permitidos para o acesso de caracteres individuais em uma string, geralmente usando o método charAt. Lembre-se de que os índices dos caracteres em uma string Java começam em 0 e vão até o tamanho da string menos 1.

Antes de vermos os exemplos, observe a posição da classe pública StringIndexOutOfBoundsException na hierarquia de classes da plataforma Java:

java.lang.Object
  java.lang.Throwable
    java.lang.Exception
      java.lang.RuntimeException
        java.lang.IndexOutOfBoundsException
          java.lang.StringIndexOutOfBoundsException

Esta classe implementa a interface Serializable.

Veja um trecho de código no qual fornecemos um índice de caractere inválido para o método charAt da classe String:

public class Estudos{
  public static void main(String args[]){
    String nome = "Java";     

    // vamos fornecer um índice inválido
    System.out.println(nome.charAt(4)); 

    System.exit(0);
  }
}

Compile este código e execute-o. Você verá a seguinte mensagem de erro:

Exception in thread "main" 
java.lang.StringIndexOutOfBoundsException: String 
index out of range: 4
  at java.lang.String.charAt(Unknown Source)
  at Estudos.main(Estudos.java:6)

Experimente trocar a linha:

System.out.println(nome.charAt(4));

por:

System.out.println(nome.charAt(3));

Compile novamente e execute. Você verá que a mensagem de erro desapareceu.


Desafios, Exercícios e Algoritmos Resolvidos de Java

Veja mais Dicas e truques de Java

Dicas e truques de outras linguagens

E-Books em PDF

E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby


E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser. Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 32,90

Planilha Web - Planilhas e Calculadoras online para estudantes e profissionais de Engenharia Civil, Engenharia Elétrica e Engenharia Mecânica.


© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 48 usuários muito felizes estudando em nosso site.