Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD e VBA
PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO

Você está aqui: Cards de Engenharia Civil - Fundações
Card 1 de 11
Fundações diretas ou rasas

As fundações rasas ou diretas são utilizadas quando as camadas superficiais do solo apresentam resistência apropriada para receber as cargas provenientes de uma edificação.

A depender das características do solo abaixo de uma estrutura, podem ser usadas tanto fundações rasas como fundações profundas, desde que os estudos técnicos necessários sejam realizados durante a fase dos estudos preliminares.

Vale ressaltar que o uso das fundações rasas é recomendado quando o número de golpes do SPT for maior ou igual a 8 e a profundidade de assentamento não ultrapassar 2m, pois, acima desses valores, esse tipo de fundação se torna inviável técnica e economicamente.

Filtrar Cards
Use esta opção para filtrar os cards pelos tópicos que mais lhe interessam.
Termos:
Aviso Importante: Nos esforçamos muito para que o conteúdo dos cards e dos testes e conhecimento seja o mais correto possível. No entanto, entendemos que erros podem ocorrer. Caso isso aconteça, pedimos desculpas e estamos à disposição para as devidas correções. Além disso, o conteúdo aqui apresentado é fruto de conhecimento nosso e de pesquisas na internet e livros. Caso você encontre algum conteúdo que não deveria estar aqui, por favor, nos comunique pelos e-mails exibidos nas opções de contato.
Link para compartilhar na Internet ou com seus amigos:

Python ::: Dicas & Truques ::: Lista (List)

Vetores e matrizes em Python - Como inserir itens em posições aleatórias de uma lista

Quantidade de visualizações: 10039 vezes
Este exemplo mostra como adicionar itens em posições aleatórias de uma lista Python. Note como usamos o método insert() da classe List passando um valor randômico para o índice no qual o novo elemento será inserido.

Veja o código completo para a dica:

# vamos importar o módulo random
import random

def main():
  # cria uma lista vazia
  valores = []
 
  # início do laço for
  for i in range(1, 11):
    valor = int(input("Informe um inteiro: "))
   
    if(len(valores) == 0):
      valores.insert(0, valor)
    else:
      # insere o valor em um posição aleatória
      valores.insert(random.randrange(0, 
        len(valores)), valor)
 
    # exibe os valores da lista
    print("Valores na lista:", valores, "\n")
    # fim do laço for

if __name__== "__main__":
  main()

Ao executarmos este código Python nós teremos o seguinte resultado:

Informe um inteiro: 9
Valores na lista: [9]

Informe um inteiro: 3
Valores na lista: [3, 9]

Informe um inteiro: 2
Valores na lista: [2, 3, 9]

Informe um inteiro: 8
Valores na lista: [2, 3, 8, 9]

Informe um inteiro: 10
Valores na lista: [10, 2, 3, 8, 9]

Informe um inteiro: 18
Valores na lista: [18, 10, 2, 3, 8, 9]

Informe um inteiro: 30
Valores na lista: [18, 10, 30, 2, 3, 8, 9]

Informe um inteiro: 60
Valores na lista: [18, 10, 30, 2, 3, 8, 60, 9]

Informe um inteiro: 67
Valores na lista: [18, 10, 67, 30, 2, 3, 8, 60, 9]

Informe um inteiro: 82
Valores na lista: [18, 10, 67, 30, 2, 3, 8, 82, 60, 9]


C ::: C para Engenharia ::: Geometria Analítica e Álgebra Linear

Como calcular a norma ou módulo de vetores nos espaços R2 e R3 usando C - Geometria Analítica e Álgebra Linear usando C

Quantidade de visualizações: 4766 vezes
Em Geometria Analítica e Álgebra Linear, a magnitude, norma, comprimento, tamanho ou módulo (também chamado de intensidade na Física) de um vetor é o seu comprimento, que pode ser calculado por meio da distância de seu ponto final a partir da origem, no nosso caso (0,0).

Considere o seguinte vetor no plano, ou seja, no espaço bidimensional, ou R2:

\[\vec{v} = \left(7, 6\right)\]

Aqui este vetor se inicia na origem (0, 0) e vai até as coordenadas (x = 7) e (y = 6). Veja sua plotagem no plano 2D:



Note que na imagem já temos todas as informações que precisamos, ou seja, o tamanho desse vetor é 9 (arredondado) e ele faz um ângulo de 41º (graus) com o eixo x positivo. Em linguagem mais adequada da trigonometria, podemos dizer que a medida do cateto oposto é 6, a medida do cateto adjacente é 7 e a medida da hipotenusa (que já calculei para você) é 9.

Note que já mostrei também o ângulo theta (__$\theta__$) entre a hipotenusa e o cateto adjacente, o que nos dá a inclinação da reta representada pelos pontos (0, 0) e (7, 6).

Relembrando nossas aulas de trigonometria nos tempos do colegial, temos que o quadrado da hipotenusa é a soma dos quadrados dos catetos, ou seja, o Teorema de Pitágoras:

\[a^2 = b^2 + c^2\]

Como sabemos que a potenciação é o inverso da radiciação, podemos escrever essa fórmula da seguinte maneira:

\[a = \sqrt{b^2 + c^2}\]

Passando para os valores x e y que já temos:

\[a = \sqrt{7^2 + 6^2}\]

Podemos comprovar que o resultado é 9,21 (que arredondei para 9). Não se esqueça da notação de módulo ao apresentar o resultado final:

\[\left|\vec{v}\right| = \sqrt{7^2 + 6^2}\]

E aqui está o código C que nos permite informar os valores x e y do vetor e obter o seu comprimento, tamanho ou módulo:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
  
int main(int argc, char *argv[]){
  float x, y, norma;
  // vamos ler os valores x e y
  printf("Informe o valor de x: ");
  scanf("%f", &x);
  printf("Informe o valor de y: ");
  scanf("%f", &y);
  
  // vamos calcular a norma do vetor
  norma = sqrt(pow(x, 2) + pow(y, 2));
    
  // mostra o resultado
  printf("A norma do vetor é: %f", norma);
 
  printf("\n\n");
  system("PAUSE");
  return 0;
}

Ao executar este código C nós teremos o seguinte resultado:

Informe o valor de x: 7
Informe o valor de y: 6
A norma do vetor é: 9.219544457292887

Novamente note que arredondei o comprimento do vetor para melhor visualização no gráfico. Para calcular a norma de um vetor no espaço, ou seja, no R3, basta acrescentar o componente z no cálculo.


C ::: Dicas & Truques ::: Ordenação e Pesquisa (Busca)

Ordenação e pesquisa em C - Como ordenar um vetor de inteiros usando a ordenação Insertion Sort (Ordenação por Inserção)

Quantidade de visualizações: 3242 vezes
A ordenação Insertion Sort, ou Ordenação por Inserção, possui uma complexidade de tempo de execução igual à ordenação Bubble Sort (Ordenação da Bolha), ou seja, O(n2). Embora mais rápido que o Bubble Sort, e ser um algorítmo de ordenação quadrática, a ordenação Insertion Sort é bastante eficiente para problemas com pequenas entradas, sendo o mais eficiente entre os algoritmos desta ordem de classificação, porém, nunca recomendada para um grande conjunto de dados.

A forma mais comum para o entendimento da ordenação Insertion Sort é compará-la com forma pela qual algumas pessoas organizam um baralho num jogo de cartas. Imagine que você está jogando as cartas. Você está com as cartas na mão e elas estão ordenadas. Você recebe uma nova carta e deve colocá-la na posição correta da sua mão de cartas, de forma que as cartas obedeçam à ordenação.

A cada nova carta adicionada à sua mão de cartas, a nova carta pode ser menor que algumas das cartas que você já tem na mão ou maior, e assim, você começa a comparar a nova carta com todas as cartas na sua mão até encontrar sua posição correta. Você insere a nova carta na posição correta, e, novamente, a sua mão é composta de cartas totalmente ordenadas. Então, você recebe outra carta e repete o mesmo procedimento. Então outra carta, e outra, e assim em diante, até não receber mais cartas.

Esta é a ideia por trás da ordenação por inserção. Percorra as posições do vetor (array), começando com o índice 1 (um). Cada nova posição é como a nova carta que você recebeu, e você precisa inseri-la no lugar correto no sub-vetor ordenado à esquerda daquela posição.

Vamos ver a implementação na linguagem C agora? Observe o seguinte código, no qual temos um vetor de inteiros com os elementos {4, 6, 2, 8, 1, 9, 3, 0, 11}:

#include <stdio.h>
#include <stdlib.h>
 
// função que permite ordenar um vetor de inteiros
// usando a ordenação Insertion Sort
void insertionSort(int vetor[], int tam){
  int i, temp, j;
  
  // este laço varre os elementos a partir do segundo
  // elemento, ou seja, o índice 1
  for(i = 1; i < tam; i++){
    // guardamos o elemento atual em temp
    temp = vetor[i];
		
    for(j = i; ((j > 0) && (vetor[j - 1] > temp)); j--){ 
      vetor[j] = vetor[j - 1]; // houve uma troca
    }
    
    vetor[j] = temp; // colocamos temp em seu devido lugar
  }
}  
 
int main(int argc, char *argv[]){
  int valores[] = {4, 6, 2, 8, 1, 9, 3, 0, 11};
  int i, tamanho = 9;
 
  // imprime a matriz sem a ordenação
  puts("Sem ordenação:\n");
  for(i = 0; i < 9; i++){
    printf("%d ", valores[i]);
  }
 
  // vamos ordenar a matriz
  insertionSort(valores, tamanho);
 
  // imprime a matriz ordenada
  puts("\n\nOrdenada usando Insertion Sort:\n");
  for(i = 0; i < 9; i++){
    printf("%d ", valores[i]);
  }   
  
  printf("\n\n");
  system("PAUSE");
  return 0;
}

Ao executar este código C nós teremos o seguinte resultado:

Sem ordenação:

4 6 2 8 1 9 3 0 11

Ordenada usando Insertion Sort:

0 1 2 3 4 6 8 9 11


Ruby ::: Dicas & Truques ::: Strings e Caracteres

Como inserir uma substring em uma determinada posição de uma string em Ruby usando a função insert()

Quantidade de visualizações: 9197 vezes
Muita vezes precisamos inserir uma substring em uma determinada posição de uma string em Ruby. Esta tarefa pode ser realizada com a função insert() da classe String.

Esta função opera na string original e requer dois argumentos: a posição na string onde a substring será inserida e a substring propriamente dita. A posição é um índice iniciando em 0. Índices negativos são contados a partir do final da string.

Veja o exemplo:

# declara e inicializa uma variável string
frase = "Gosto muito de Ruby"
puts "A frase original é: " + frase

# vamos inserir " Python e" antes de "Ruby". 
frase.insert(14, " Python e")

# exibe o resultado 
puts "A nova frase é: " + frase

Ao executar este código Ruby nós teremos o seguinte resultado:

A frase original é: Gosto muito de Ruby
A nova frase é: Gosto muito de Python e Ruby


R ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas

Como calcular o coeficiente angular de uma reta em R dados dois pontos no plano cartesiano

Quantidade de visualizações: 1928 vezes
O Coeficiente Angular de uma reta é a variação, na vertical, ou seja, no eixo y, pela variação horizontal, no eixo x. Sim, isso mesmo. O coeficiente angular de uma reta tem tudo a ver com a derivada, que nada mais é que a taxa de variação de y em relação a x.

Vamos começar analisando o seguinte gráfico, no qual temos dois pontos distintos no plano cartesiano:



Veja que o segmento de reta AB passa pelos pontos A (x=3, y=6) e B (x=9, y=10). Dessa forma, a fórmula para obtenção do coeficiente angular m dessa reta é:

\[\ \text{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tg \theta \]

Note que __$\Delta y__$ e __$\Delta x__$ são as variações dos valores no eixo das abscissas e no eixo das ordenadas. No triângulo retângulo que desenhei acima, a variação __$\Delta y__$ se refere ao comprimento do cateto oposto e a variação __$\Delta y__$ se refere ao comprimento do cateto adjascente.

Veja agora o trecho de código na linguagem R que solicita as coordenadas x e y dos dois pontos, efetua o cálculo e mostra o coeficiente angular m da reta que passa pelos dois pontos:

# x e y do primeiro ponto
x1 <- readline("Coordenada x do primeiro ponto: ")
y1 <- readline("Coordenada y do primeiro ponto: ")
x1 <- as.numeric(x1)
y1 <- as.numeric(y1)

# x e y do segundo ponto
x2 <- readline("Coordenada x do segundo ponto: ")
y2 <- readline("Coordenada y do segundo ponto: ")
x2 <- as.numeric(x2)
y2 <- as.numeric(y2)

# agora vamos calcular o coeficiente angular
m <- (y2 - y1) / (x2 - x1)

# mostramos o resultado
paste("O coeficiente angular é:", m)

Ao executar este código em linguagem R nós teremos o seguinte resultado:

[1] "O coeficiente angular é: 0.666666666666667"

Veja agora como podemos calcular o coeficiente angular da reta que passa pelos dois pontos usando o Teorema de Pitágoras. Note que agora nós estamos tirando proveito da tangente do ângulo Theta (__$\theta__$), também chamado de ângulo Alfa ou Alpha (__$\alpha__$):

# x e y do primeiro ponto
x1 <- readline("Coordenada x do primeiro ponto: ")
y1 <- readline("Coordenada y do primeiro ponto: ")
x1 <- as.numeric(x1)
y1 <- as.numeric(y1)

# x e y do segundo ponto
x2 <- readline("Coordenada x do segundo ponto: ")
y2 <- readline("Coordenada y do segundo ponto: ")
x2 <- as.numeric(x2)
y2 <- as.numeric(y2)

# vamos obter o comprimento do cateto oposto
cateto_oposto <- y2 - y1
# e agora o cateto adjascente
cateto_adjascente <- x2 - x1
# vamos obter o ângulo tetha, ou seja, a inclinação da hipetunesa
# (em radianos, não se esqueça)
tetha <- atan2(cateto_oposto, cateto_adjascente)
# e finalmente usamos a tangente desse ângulo para calcular
# o coeficiente angular
tangente <- tan(tetha)

# mostramos o resultado
paste("O coeficiente angular é:", tangente)

Ao executar este código você verá que o resultado é o mesmo. No entanto, fique atento às propriedades do coeficiente angular da reta:

1) O coeficiente angular é positivo quando a reta for crescente, ou seja, m > 0;

2) O coeficiente angular é negativo quando a reta for decrescente, ou seja, m < 0;

3) Se a reta estiver na horizontal, ou seja, paralela ao eixo x, seu coeficiente angular é zero (0).

4) Se a reta estiver na vertical, ou seja, paralela ao eixo y, o coeficiente angular não existe.


Veja mais Dicas e truques de R

Dicas e truques de outras linguagens

E-Books em PDF

E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby


E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser. Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 32,90

Planilha Web - Planilhas e Calculadoras online para estudantes e profissionais de Engenharia Civil, Engenharia Elétrica e Engenharia Mecânica.


© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 85 usuários muito felizes estudando em nosso site.