Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD e VBA
PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO

Você está aqui: Cards de Engenharia Civil - Estruturas de Concreto Armado
Card 1 de 40
Segurança e Estados Limites Ações nas Estruturas de Concreto Armado

As combinações últimas normais e as combinações últimas de construção ou especiais se diferem apenas pelo coeficiente ψ, que é ψ0 para as combinações normais últimas e pode ser ψ0 ou ψ2 para as combinações últimas de construção ou especiais, dependendo da duração da ação variável principal.

Nas combinações últimas excepcionais, a ação excepcional é considerada em seu valor característico, isto é, não majorada.

As ações variáveis são consideradas com seus valores quase permanentes pela multiplicação pelo fator de redução ψ2.

Nas combinações frequentes de serviço, existe uma ação variável principal considerada no seu valor frequente pela multiplicação pelo fator ψ1, e as demais consideradas em seus quase permanentes, pela multiplicação por ψ2.

Já, nas combinações raras de serviço, a variável principal se encontra em seu valor característico, ao passo que as demais ações variáveis são consideradas em seus valores frequentes, pela multiplicação por ψ1.

Filtrar Cards
Use esta opção para filtrar os cards pelos tópicos que mais lhe interessam.
Termos:
Aviso Importante: Nos esforçamos muito para que o conteúdo dos cards e dos testes e conhecimento seja o mais correto possível. No entanto, entendemos que erros podem ocorrer. Caso isso aconteça, pedimos desculpas e estamos à disposição para as devidas correções. Além disso, o conteúdo aqui apresentado é fruto de conhecimento nosso e de pesquisas na internet e livros. Caso você encontre algum conteúdo que não deveria estar aqui, por favor, nos comunique pelos e-mails exibidos nas opções de contato.
Link para compartilhar na Internet ou com seus amigos:

C ::: Dicas & Truques ::: Rotinas de Conversão

Como converter uma string em um valor inteiro usando a função atoi() da linguagem C

Quantidade de visualizações: 47055 vezes
Em algumas situações, pode ser necessário converter uma string em um valor numérico inteiro. Para isso podemos usar a função atoi().

Esta função recebe uma matriz de caracteres e tenta transformá-la em um valor inteiro. Se a conversão não for possível, o valor 0 é retornado. Os sinais "+" e "-" são válidos na string a ser convertida. Veja um exemplo:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
  // valor inteiro em forma de string
  char valor_str[] = "10";

  // A linha abaixo causa um comportamento estranho
  //int res = 40 + valor_str;

  // temos que converter a string em um valor inteiro válido
  int res = 40 + atoi(valor_str);

  printf("O resultado e: %d", res);

  puts("\n");
  system("pause");
  return 0;
}



Python ::: Python para Engenharia ::: Hidrologia e Hidráulica

Como calcular o volume de chuvas em Python - Fórmula do cálculo do volume de chuvas em Python

Quantidade de visualizações: 483 vezes
O estudo da Hidrologia passa, necessariamente, pelo cálculo do volume de chuvas em uma determinada região, ou bacia hidrológica. Assim, é comum ouvirmos alguém dizer que, em um determinado local, choveu 100 mm durante um determinado período. Mas o que isso significa?

O mês mais chuvoso em Goiânia é dezembro, com média de 229 milímetros de precipitação de chuva. Isso significa que, em uma área de 1 m2, a lâmina de água formada pela chuva que cai apresenta uma altura de 229 milímetros.

Como sabemos que o volume é a área multiplicada pela altura, tudo que temos a fazer é considerar a área de 1 m2 multiplicada pela altura da lâmina de água (convertida também para metros). Veja a fórmula:

\[\text{Volume} = \text{(Área da Base) x Altura}\]

Lembre-se de que volume pode ser retornado em litros, ou seja, 1 m3 = 1000 litros.

Veja agora o código Python completo que pede para o usuário informar a precipitação da chuva, ou seja, a altura da lâmina de água em milímetros e retorna o volume de água em litros.

# função principal do programa
def main():
  # vamos pedir para o usuário informar a altura da lâmina
  # de água em milímetros
  altura_lamina = float(input("Altura da lâmina de água em milímetros: "))

  # o primeiro passo é converter os milímetros da lâmina de água
  # para metros
  altura_lamina = altura_lamina / 1000

  # agora que já temos a altura da lâmina em metros, vamos multiplicar
  # pela base (1 metro quadrado) para obtermos o volume da chuva por
  # metro quadrado
  volume_chuva = (altura_lamina * 1.00) * 1000

  # vamos mostrar o resultado
  print("O volume da chuva é: {0} litros para cada metro quadrado".format(volume_chuva))

if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

Altura da lâmina de água em milímetros: 229
O volume da chuva é: 229.0 litros para cada metro quadrado

Qual é o volume de 1 mm de chuva?

A altura pluviométrica é a espessura da lâmina d'água precipitada que cobre a região atingida pela chuva. Geralmente a unidade de medição é o milímetro (mm) porque o aparelho que mede a chuva, o pluviômetro, é lido em milímetros.

O pluviômetro é um aparelho meteorológico destinado a medir, em milímetros, a altura da lâmina de água gerada pela chuva que caiu numa área de 1 m2.

1 mm de chuva equivale a 1 litro de água, ou 1 dm3, considerando a área de 1 m2.


VisuAlg ::: Desafios e Lista de Exercícios Resolvidos ::: VisuAlg Básico

Exercícios Resolvidos de VisuAlg - Escreva um programa VisuAlg para calcular e imprimir o número de lâmpadas necessárias

Quantidade de visualizações: 488 vezes
Pergunta/Tarefa:

Escreva um programa VisuAlg para calcular e imprimir o número de lâmpadas necessárias para iluminar um determinado cômodo de uma residência. Dados de entrada: a potência da lâmpada utilizada (em watts), as dimensões (largura e comprimento, em metros) do cômodo. Considere que a potência necessária é de 18 watts por metro quadrado.

Sua saída deverá ser parecida com:

Informe a potência da lâmpada (em watts): 100
Informe a largura do cômodo (em metros): 6
Informe o comprimento do cômodo (em metros): 4
Serão necessárias 4 lâmpadas.
Resposta/Solução:

Veja a resolução completa para o exercício em VisuAlg, comentada linha a linha:

algoritmo "Como calcular o número de lâmpadas necessárias"

var
  // variáveis usadas na resolução do problema
  potencia_lampada, largura_comodo, comprimento_comodo: real
  area_comodo, potencia_total: real
  quant_lampadas: inteiro

inicio
  // vamos ler a potência da lâmpada
  escreva("Informe a potência da lâmpada (em watts): ")
  leia(potencia_lampada)

  // vamos ler a largura do cômodo
  escreva("Informe a largura do cômodo (em metros): ")
  leia(largura_comodo)

  // agora vamos ler o comprimento do cômodo
  escreva("Informe o comprimento do cômodo (em metros): ")
  leia(comprimento_comodo)

  // agora vamos calcular a área do cômodo
  area_comodo <- largura_comodo * comprimento_comodo

  // calculamos a potência total necessária para iluminar
  // todo o cômodo
  potencia_total <- area_comodo * 18

  // e finalmente calculamos a quantidade de lâmpadas necessárias
  quant_lampadas <- Int(potencia_total / potencia_lampada)

  // será necessário no mínimo uma lâmpada
  se quant_lampadas = 0 entao
    quant_lampadas <- quant_lampadas + 1
  fimse

  // e mostramos o resultado
  escreva("Serão necessárias ", quant_lampadas, " lâmpadas.")

fimalgoritmo



Python ::: Python para Engenharia ::: Engenharia Civil - Cálculo Estrutural

Como calcular os esforços solicitantes majorados em pilares usando Python - Python para Engenharia Civil

Quantidade de visualizações: 764 vezes


Quando estamos dimensionando pilares em concreto armado em geral, a primeira coisa que devemos fazer é calcular os esforços solicitantes, ou seja, as cargas que estão chegando ao pilar.

No caso dos pilares intermediários, ou seja, pilares que residem fora dos cantos e extremidades da estrutura e que, por isso, recebem a carga em seu centro geométrico, considera-se a compressão centrada. Dessa forma, chamamos de Nk o somatório de todas as cargas verticais atuantes na estrutura e podemos desprezar as excentricidades de 1ª ordem.

De acordo com a NBR 6118 (ABNT, 2014), para a situação de projeto, essa força normal Nk deve ser majorada pelos coeficientes &#947;n e &#947;f, resultando em uma força normal de projeto chamada Nd.

O coeficiente &#947;n deve majorar os esforços solicitantes finais de cálculo de acordo com a menor dimensão do pilar. A norma diz que a menor dimensão que um pilar pode ter é 19cm, mas, em alguns casos, podemos ter a menor dimensão de até 14cm, precisando, para isso, majorar os esforços solicitantes. Nos comentários do código Python eu mostro como esse cálculo é feito, de acordo com a NBR 6118 (ABNT, 2014), é claro.

O coeficiente &#947;f, na maioria dos casos, possui o valor 1,4 e entra no cálculo para converter a força normal Nk em força normal de projeto Nd.

A fórmula para o cálculo dos esforços solicitantes majorados em pilares intermediários é:

\[ Nd = \gamma n \cdot \gamma f \cdot Nk \]

Onde:

&#947;n majora os esforços de acordo com a menor dimensão do pilar de acordo com a NBR 6118 (ABNT, 2014).

&#947;f em geral possui o valor 1.4 para majorar os esforços em estruturas de concreto armado.

Nk é a força normal característica aplicada ao pilar, em kN.

Nd é a força normal de projeto, em kN.

Vamos então ao código Python, que solicitará ao usuário os valores de suas dimensões hx e hy (em centímetros) e a carga, ou seja, a força normal característica chegando no pilar em kN e vamos mostrar a força normal de projeto Nd:

# método principal
def main():
  # vamos pedir as dimensões do pilar
  hx = float(input("Informe a dimensão do pilar na direção x (em cm): "))
  hy = float(input("Informe a dimensão do pilar na direção y (em cm): "))

  # vamos pedir a carga total no pilar em kN
  Nk = float(input("Informe a carga total no pilar (em kN): "))

  # vamos obter o menor lado do pilar (menor dimensão da seção transversal)
  if (hx < hy):
    b = hx
  else:
    b = hy
  
  # agora vamos calcular a área do pilar em centímetros quadrados
  area = hx * hy

  # a área está de acordo com a norma NBR 6118 (ABNT, 2014)
  if (area < 360):
    print("A área do pilar não pode ser inferior a 360cm2")
    return

  # vamos calcular a força normal de projeto Nd
  yn = 1.95 - (0.05 * b) # de acordo com a norma NBR 6118 (ABNT, 2014) Tabela 13.1
  yf = 1.4 # regra geral para concreto armado
  Nd = yn * yf * Nk

  # e mostramos os resultados
  print("\nA área do pilar é: {0} cm2".format(round(area, 2)))
  print("A menor dimensão do pilar é: {0} cm".format(round(b, 2)))
  print("O valor do coeficiente yn é: {0}".format(round(yn, 2)))
  print("A força normal de projeto Nd é: {0} kN".format(round(Nd, 2)))

if __name__== "__main__":
  main()

Ao executar este código Python nós teremos o seguinte resultado:

Informe a dimensão do pilar na direção x (em cm): 40
Informe a dimensão do pilar na direção y (em cm): 19
Informe a carga total no pilar (em kN): 841.35

A área do pilar é: 760.0 cm2
A menor dimensão do pilar é: 19.0 cm
O valor do coeficiente yn é: 1.0
A força normal de projeto Nd é: 1177.89 kN


Java ::: Dicas & Truques ::: Programação Orientada a Objetos

Como criar uma classe Java e usar new para criar novas instâncias da mesma

Quantidade de visualizações: 21858 vezes
Esta dica mostra a você, rapidamente, como criar uma classe Java e usar a palavra-chave new para instanciar objetos a partir desta classe. Comece analisando o código para a classe Pessoa (Pessoa.java):

public class Pessoa{ 
  public String nome;
  public int idade;
}

Salve o código como Pessoa.java e compile-o. Esta classe possui apenas duas propriedades: nome e idade. Lembre-se que uma classe é composta de propriedades e métodos (funções). Veja agora como criamos um objeto desta classe e acessamos sua propriedade nome:

public class Estudos{ 
  public static void main(String args[]){ 
    // cria um objeto da classe Pessoa
    Pessoa p = new Pessoa();
    p.nome = "Osmar J. Silva";
    System.out.println(p.nome);
  } 
}

Observe o uso da palavra-chave new para reservar memória para o objeto da classe sendo criado na instrução:

Pessoa p = new Pessoa();

Observe também o uso do operador "." (ponto). Este operador é usado para acessarmos as propriedades e métodos presentes nos objetos das classes em Java.


Desafios, Exercícios e Algoritmos Resolvidos de Java

Veja mais Dicas e truques de Java

Dicas e truques de outras linguagens

E-Books em PDF

E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby


E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser. Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 32,90

Planilha Web - Planilhas e Calculadoras online para estudantes e profissionais de Engenharia Civil, Engenharia Elétrica e Engenharia Mecânica.


© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 60 usuários muito felizes estudando em nosso site.