![]() |
|
||||
Código-Fonte Controle de Estoque completo com código fonte em PHP, MySQL, Bootstrap, jQuery - 100% funcional e fácil de modificar e implementar novas funcionalidadesTenha o seu próprio sistema de controle de estoque web. com cadastro de produtos, categorias, fornecedores, entradas e saídas de produtos, com relatórios por data, margem de lucro e muito mais. Código simples e fácil de modificar. Acompanha instruções para instalação e criação do banco de dados MySQL. Clique aqui e saiba mais |
|||||
Você está aqui: Cards de Engenharia Civil - Estruturas de Concreto Armado |
||
|
||
|
|
||
Python ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas |
Como converter radianos em graus na linguagem PythonQuantidade de visualizações: 5706 vezes |
|
Todos os métodos e funções trigonométricas em Python recebem seus argumentos em radianos, em vez de graus. Um exemplo disso é a função sin() do objeto math, no módulo math. Esta função recebe o ângulo em radianos e retorna o seu seno. No entanto, há momentos nos quais precisamos retornar alguns valores como graus. Para isso é importante sabermos fazer a conversão de radianos para graus. Veja a fórmula abaixo: \[Graus = Radianos \times \frac{180}{\pi}\] Agora veja como esta fórmula pode ser escrita em código Python:
import math
# função principal do programa
def main():
# valor em radianos
radianos = 1.5
# obtém o valor em graus
graus = radianos * (180 / math.pi)
# mostra o resultado
print(radianos, "radianos convertidos para",
"graus é", graus)
if __name__== "__main__":
main()
Ao executarmos este código Python nós teremos o seguinte resultado: 1.5 radianos convertidos para graus é 85.94366926962348 Para fins de memorização, 1 radiano equivale a 57,2957795 graus. Por fim, saiba que a linguagem Python nos oferece o método math.degrees() que nos permite converter ângulos radianos em graus. Meu propósito nesta dica foi mostrar a você como o cálculo de conversão pode ser escrito em Python. Em outras dicas dessa seção abordaremos o método math.degrees(). |
Python ::: Dicas & Truques ::: Ordenação e Pesquisa (Busca) |
Como usar a busca binária em Python - Pesquisa binária na linguagem PythonQuantidade de visualizações: 881 vezes |
|
A busca binária, ou pesquisa binária, é um algoritmo eficiente para encontrar um item em uma lista (vetor ou array) ordenada. Sim, os itens devem, obrigatoriamente, estar ordenados. O processo é bem simples. A busca binária começa a partir do meio da lista e compara o item nesta posição com o valor sendo pesquisado. Se o valor não for encontrado e for menor que o item no meio da lista, o algoritmo passa para a porção à esquerda da lista, eliminando, assim, metade dos elementos do vetor ou array (a porção maior que o valor pesquisado). Se o valor não for encontrado e for maior que o item no meio da lista, então a busca reinicia a partir da metade da sub-lista à direita (os itens maiores que o valor pesquisado). Essa divisão continua até que o valor seja encontrado ou não seja mais possível dividir a lista pela metade. Se um array ou vetor possuir 100 elementos e usarmos a busca binária nele, precisaremos efetuar no máximo 7 tentativas para encontrar o valor desejado. Se a lista possuir 4 bilhões de itens nós teremos que fazer no máximo 32 tentativas. Isso acontece porque a pesquisa binária é executada em tempo logarítmico, ou seja, log2 n, onde n é a quantidade de itens no vetor. Dessa forma, se tivemos 1.000 itens em um array, log2 1000 = 10 tentativas. Lembre-se de que, na programação log e log2 retornam resultados diferentes: log(10) = 2.302585092994046 enquanto log2(10) = 3.321928094887362. Na análise da busca binária nós usamos sempre log2. Vamos agora ver como podemos codificar a busca binária em Python. Veja o código a seguir:
# função principal do programa
def main():
# vamos criar uma lista ordenada de inteiros
valores = [3, 5, 7, 8, 9, 12, 43, 50, 52, 60]
print("Os valores da lista são: {0}".format(valores))
# vamos pedir o item a ser pesquisado
numero = int(input("Informe o número a ser pesquisado: "))
# agora vamos pesquisar o número no array usando a pesquisa
# binária
# a variável esquerda aponta para o primeiro elemento do vetor
esquerda = 0
# a variável direita aponta para o último elemento do vetor
direita = len(valores) - 1
# para indicar se o valor foi encontrado
encontrado = False
# enquanto houver mais de um elemento a ser comparado
while esquerda <= direita:
# obtemos o elemento na metade da lista
meio = (esquerda + direita) // 2
# fazemos a comparação
if numero == valores[meio]:
print("O número foi encontrado no índice {0}".format(
meio))
encontrado = True
break # sai do laço
# o item atual é maior que o valor pesquisado?
if valores[meio] > numero:
direita = meio - 1
# o item atual é menor que o valor pesquisado?
else:
esquerda = meio + 1
# o valor foi encontrado?
if not encontrado:
print("O valor pesquisado não foi encontrado")
if __name__== "__main__":
main()
Ao executar este código Python nós teremos o seguinte resultado: Os valores da lista são: [3, 5, 7, 8, 9, 12, 43, 50, 52, 60] Informe o número a ser pesquisado: 9 O número foi encontrado no índice 4 |
Java ::: Desafios e Lista de Exercícios Resolvidos ::: Arrays e Matrix (Vetores e Matrizes) |
Exercícios Resolvidos de Java - Como resolver o problema da Subsequência de Soma Máxima em Java usando o Algorítmo de KadaneQuantidade de visualizações: 807 vezes |
|
Pergunta/Tarefa: O problema do Subvetor Contíguo de Soma Máxima, ou Subarray ou Subsequência de Soma Máxima é um dos algorítmos mais populares na programação dinâmica. Este problema envolve encontrar um subvetor, ou seja, um sub-array contíguo de maior soma possível. Por contíguo entendemos que os elementos da subsequência deverão estar consecutivos no vetor original. O Algorítmo de Kadane, inventado por Jay Kadane em 1977, é um dos favoritos para a resolução deste problema, e deverá ser aplicado na resolução deste exercício. Dado o vetor [-2, 1, -3, 4, -1, 2, 1, -5, 4], encontre a soma máxima da subsequência contígua. Não é exigido mostrar os elementos da sub-sequência, apenas o valor da soma máxima. Sua saída deverá ser parecida com: A soma maxima é: 6 Veja a resolução comentada deste exercício usando Java:
package estudos;
public class Estudos {
public static void main(String[] args) {
// vamos criar um array com 9 elementos
int valores[] = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
// agora usamos o algoritmo de Kadane para encontrar
// a maior soma consecutiva
int soma_maxima = kadane(valores);
System.out.println("A soma maxima é: " + soma_maxima);
}
// método que recebe um array e usa o algoritmo de Kadane
// para retornar a maior soma consecutiva
public static int kadane(int vetor[]){
// ajustamos max_atual para 0 e max_total para -1
int max_atual = 0, max_total = -1;
// um laço for que percorre todos os elementos do
// vetor, do primeiro até o último
for(int i = 0; i < vetor.length; i++){
// max_atual recebe ele mesmo mais o valor
// do elemento no índice i
max_atual = max_atual + vetor[i];
// se max_atual for negativo nós o ajustamos
// para zero novamente
if(max_atual < 0){
max_atual = 0;
}
// se max_atual for maior que max_total então
// max_total recebe o valor de max_atual
if(max_atual > max_total){
max_total = max_atual;
}
}
// e retornamos a soma máxima
return max_total;
}
}
|
Delphi ::: Dicas & Truques ::: Strings e Caracteres |
Como converter todo o conteúdo de uma string para letras maiúsculas em Delphi usando a função AnsiUpperCase()Quantidade de visualizações: 17468 vezes |
Algumas vezes precisamos converter todo o conteúdo de uma string para letras maiúsculas. Em Delphi isso pode ser feito com o auxílio da função AnsiUpperCase(). Esta função recebe uma string e retorna outra string com todos os caracteres maiúsculos. Veja o exemplo:procedure TForm1.Button1Click(Sender: TObject); var nome: string; begin nome := 'Osmar'; // vamos converter a string para letras maiúsculas nome := AnsiUpperCase(nome); // exibe o resultado ShowMessage(nome); end; Note que esta função suporta caracteres de mais de um byte e com acentuações. Para questões de compatibilidade, esta dica foi escrita usando Delphi 2009. |
Java ::: Java Swing - Gerenciadores de Layout ::: GridBagLayout |
Como posicionar os componentes nas linhas e colunas de um GridBagLayout do Java Swing usando as propriedades gridx e gridyQuantidade de visualizações: 12685 vezes |
|
A classe GridBagConstraints, usada para definir como os componentes serão distribuidos em um GridBagLayout, possui duas variáveis que permitem definir a linha e coluna nas quais o componente será colocado. Veja-as abaixo: gridx - Especifica a coluna na qual o componente será colocado. A primeira coluna possui o valor 0. Esta variável pode receber também o valor RELATIVE (valor padrão). Neste caso, o componente será colocado imediatamente após o último componente inserido (na horizontal). gridy - Especifica a linha na qual o componente será colocado. A primeira linha possui o valor 0. Esta variável pode receber também o valor RELATIVE (valor padrão). Neste caso, o componente será colocado imediatamente abaixo do último componente inserido (na vertical). Veja um trecho de código que mostra como posicionar seis botões nas linhas e colunas de um GridBagLayout:
import javax.swing.*;
import java.awt.*;
public class Estudos extends JFrame{
public Estudos(){
super("Como usar a classe GridBagLayout");
// define o layout
setLayout(new GridBagLayout());
// cria o GridBagConstraints
GridBagConstraints gbc = new GridBagConstraints();
// adiciona componentes à janela
gbc.gridy = 0; // linha
gbc.gridx = 0; // coluna
add(new JButton("Botão 1"), gbc);
gbc.gridy = 0; // linha
gbc.gridx = 1; // coluna
add(new JButton("Botão 2"), gbc);
gbc.gridy = 0; // linha
gbc.gridx = 2; // coluna
add(new JButton("Botão 3"), gbc);
gbc.gridy = 1; // linha
gbc.gridx = 0; // coluna
add(new JButton("Botão 4"), gbc);
gbc.gridy = 1; // linha
gbc.gridx = 1; // coluna
add(new JButton("Botão 5"), gbc);
gbc.gridy = 1; // linha
gbc.gridx = 2; // coluna
add(new JButton("Botão 6"), gbc);
setSize(350, 150);
setVisible(true);
}
public static void main(String args[]){
Estudos app = new Estudos();
app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}
}
|
Desafios, Exercícios e Algoritmos Resolvidos de Java |
Veja mais Dicas e truques de Java |
Dicas e truques de outras linguagens |
E-Books em PDF |
||||
|
||||
|
||||
Linguagens Mais Populares |
||||
|
1º lugar: Java |






