Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD e VBA
PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser. Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 19,90
Você está aqui: Cards de Engenharia Civil - Construção Civil
Card 1 de 28
Fases de uma obra

A Planta de Localização (escala usual 1:200) identifica a posição da obra no terreno. Serve para implantar o projeto.

Filtrar Cards
Use esta opção para filtrar os cards pelos tópicos que mais lhe interessam.
Termos:
Aviso Importante: Nos esforçamos muito para que o conteúdo dos cards e dos testes e conhecimento seja o mais correto possível. No entanto, entendemos que erros podem ocorrer. Caso isso aconteça, pedimos desculpas e estamos à disposição para as devidas correções. Além disso, o conteúdo aqui apresentado é fruto de conhecimento nosso e de pesquisas na internet e livros. Caso você encontre algum conteúdo que não deveria estar aqui, por favor, nos comunique pelos e-mails exibidos nas opções de contato.
Link para compartilhar na Internet ou com seus amigos:

C# ::: Dicas & Truques ::: Arrays e Matrix (Vetores e Matrizes)

Como ordenar um array de strings em ordem alfabética em C# usando a classe StringComparer

Quantidade de visualizações: 17953 vezes
Nesta dica mostrarei como classificar um vetor de strings C# em ordem alfabética. Para isso nós vamos usar um objeto da classe StringComparer.

Veja o código completo para o exemplo:

using System;

namespace Estudos {
  class Program {
    static void Main(string[] args) {
      // cria e inicializa um array de strings
      string[] cidades = {"Goiânia", "São Paulo",
        "Rio de Janeiro", "Curitiba"};

      Console.WriteLine("Ordem original:");
      for (int i = 0; i < cidades.Length; i++) {
        Console.WriteLine(cidades[i]);
      }

      // vamos criar um objeto da classe StringComparer
      StringComparer ordenar = StringComparer.CurrentCultureIgnoreCase;

      // agora classificamos o vetor em ordem alfabética
      Array.Sort(cidades, ordenar);

      Console.WriteLine();
      Console.WriteLine("Ordem alfabética:");
      for (int i = 0; i < cidades.Length; i++) {
        Console.WriteLine(cidades[i]);
      }

      Console.WriteLine("\n\nPressione uma tecla para sair...");
      Console.ReadKey();
    }
  }
}

Ao executar este código C# nós teremos o seguinte resultado:

Ordem original:
Goiânia
São Paulo
Rio de Janeiro
Curitiba

Ordem alfabética:
Curitiba
Goiânia
Rio de Janeiro
São Paulo


Java ::: Desafios e Lista de Exercícios Resolvidos ::: Estruturas de Dados - Árvores Binárias e Árvores Binárias de Busca

Exercícios Resolvidos de Java - Como pesquisar um valor em uma árvore binária de busca usando uma função recursiva

Quantidade de visualizações: 4561 vezes
Pergunta/Tarefa:

Escreva uma função recursiva em Java que permite pesquisar um valor em uma árvore binária de busca (BST). Se o valor for encontrado, uma referência ao nó da árvore (um objeto da classe NoArvore, por exemplo) deverá ser retornado. Caso contrário, o valor null deverá ser retornado para indicar que não há nós na árvore contendo tal valor.

Sua saída deverá ser parecida com:

Informe um valor inteiro: 7
Informe um valor inteiro: 1
Informe um valor inteiro: 8
Informe um valor inteiro: 10
Informe um valor inteiro: 4

Informe o valor a ser pesquisado: 3
O valor não foi encontrado na árvore

Informe um valor inteiro: 8
Informe um valor inteiro: 2
Informe um valor inteiro: 35
Informe um valor inteiro: 4
Informe um valor inteiro: 7

Informe o valor a ser pesquisado: 4
O valor foi encontrado na árvore
Resposta/Solução:

Veja a resolução comentada deste exercício usando Java:

Código para NoArvore.java:

package estudos;

public class NoArvore {
  int valor; // valor armazenado no nó
  NoArvore esquerdo; // filho esquerdo
  NoArvore direito; // filho direito

  // construtor do nó
  public NoArvore(int valor){
    this.valor = valor;
  }
}

Código para ArvoreBinariaBusca.java:

package estudos;

public class ArvoreBinariaBusca {
  private NoArvore raiz; // referência para a raiz da árvore
  
  // método usado para inserir um novo nó na árvore
  // retorna true se o nó for inserido com sucesso e false
  // se o elemento
  // não puder ser inserido (no caso de já existir um 
  // elemento igual)
  public boolean inserir(int valor){
    // a árvore ainda está vazia?
    if(raiz == null){
      // vamos criar o primeiro nó e definí-lo como a raiz da árvore
      raiz = new NoArvore(valor); // cria um novo nó
    }
    else{
      // localiza o nó pai
      NoArvore pai = null;
      NoArvore noAtual = raiz; // começa a busca pela raiz
 
      // enquanto o nó atual for diferente de null
      while(noAtual != null){
        if(valor < noAtual.valor) {
          pai = noAtual;
          noAtual = noAtual.esquerdo;
        }
        else if(valor > noAtual.valor){
          pai = noAtual;
          noAtual = noAtual.direito;
        }
        else{
          return false; // um nó com este valor foi encontrado
        }
      }
       
      // cria o novo nó e o adiciona ao nó pai
      if(valor < pai.valor){
         pai.esquerdo = new NoArvore(valor);
      }
      else{
        pai.direito = new NoArvore(valor);
      }
    }

    return true; // retorna true para indicar que o novo nó
    // foi inserido
  }
  
  // método que permite pesquisar na árvore binária de busca
  public NoArvore pesquisar(int valor){
    return pesquisar(raiz, valor); // chama a versão recursiva
    // do método
  }

  // sobrecarga do método pesquisar que recebe dois 
  // parâmetros (esta é a versão recursiva do método)
  private NoArvore pesquisar(NoArvore noAtual, int valor){
    // o valor pesquisado não foi encontrado....vamos retornar null
    if(noAtual == null){
      return null;
    }
 
    // o valor pesquisado foi encontrado?
    if(valor == noAtual.valor){
      return noAtual; // retorna o nó atual
    }  
    // ainda não encontramos...vamos disparar uma nova 
    // chamada para a sub-árvore da esquerda
    else if(valor < noAtual.valor){
      return pesquisar(noAtual.esquerdo, valor);
    }
    // ainda não encontramos...vamos disparar uma nova 
    // chamada para a sub-árvore da direita
    else{
      return pesquisar(noAtual.direito, valor);
    }
  }
}

E aqui está o código para a classe que permite testar a árvore:

package estudos;

import java.util.Scanner;

public class Estudos {
  public static void main(String[] args) {
    Scanner entrada = new Scanner(System.in);  
      
    // vamos criar um novo objeto da classe ArvoreBinariaBusca
    ArvoreBinariaBusca arvore = new ArvoreBinariaBusca();
   
    // vamos inserir 5 valores na árvore
    for(int i = 0; i < 5; i++){
      System.out.print("Informe um valor inteiro: ");
      int valor = Integer.parseInt(entrada.nextLine());
      
      // vamos inserir o nó e verificar o sucesso da operação
      if(!arvore.inserir(valor)){
        System.out.println("Erro. Um elemento já contém este valor.");  
      }
    }
    
    // vamos pesquisar um valor na árvore
    System.out.print("\nInforme o valor a ser pesquisado: ");
    int valorPesquisa = Integer.parseInt(entrada.nextLine());
    // obtém um objeto da classe NoArvore a partir do 
    // método pesquisar() da classe ArvoreBinariaBusca
    NoArvore res = arvore.pesquisar(valorPesquisa);
    // o valor foi encontrado?
    if(res != null){
      System.out.println("O valor foi encontrado na árvore");
    }
    else{
      System.out.println("O valor não foi encontrado na árvore");  
    }
    
    System.out.println("\n");
  }
}



C++ ::: Win32 API (Windows API) ::: Arquivos e Diretórios

C++ Windows API - Como ler o conteúdo de um arquivo usando a função ReadFile() da Win32 API

Quantidade de visualizações: 9186 vezes
A função ReadFile() é usada quando queremos ler o conteúdo de um arquivo. A leitura se inicia na posição zero do arquivo e mantém um ponteiro de arquivo, a partir do qual as leituras subsequentes ocorrerão. Esta função pode ser usada para leituras síncronas e assíncronas. Para leituras apenas assíncronas devemos usar ReadFileEx().

Veja seu protótipo na documentação da API do Windows:

BOOL WINAPI ReadFile(
  HANDLE hFile,
  LPVOID lpBuffer,
  DWORD nNumberOfBytesToRead,
  LPDWORD lpNumberOfBytesRead,
  LPOVERLAPPED lpOverlapped
);

Antes de vermos um exemplo de como usar a função ReadFile(), vamos dar uma olhada em seus parâmetros:

a) HANDLE hFile - Este é o handle para o arquivo a partir do qual queremos ler. Tal handle deve ser criado com o direito de acesso GENERIC_READ.

b) LPVOID lpBuffer - Um ponteiro para o buffer que receberá os dados lidos do arquivo.

c) DWORD nNumberOfBytesToRead - O número máximo de bytes a serem lidos de cada vez. Geralmente este número está relacionado à quantidade de bytes dos elementos do buffer.

d) LPDWORD lpNumberOfBytesRead - Um ponteiro para uma variável que receberá o número de bytes lidos. A função ReadFile() define o valor desta variável como 0 antes de cada leitura e verificação de erros.

e) LPOVERLAPPED lpOverlapped - Um ponteiro para um estrutura OVERLAPPED. Esta estrutura é exigida se o handle para o arquivo for obtido usando FILE_FLAG_OVERLAPPED para o parâmetro dwFlagsAndAttributes da função CreateFile(). Geralmente usamos NULL para este parâmetro.

A função ReadFile() retorna quando um erro ocorre ou a quantidade de bytes solicitados é alcançada.

Veja um trecho de código no qual lemos o conteúdo de um arquivo chamado testes.txt:

#include <cstdlib>
#include <iostream>
#include <windows.h>
#define TAM_BUFFER 256 // tamanho do buffer em bytes

using namespace std;

int main(int argc, char *argv[]){
  // nome do arquivo
  CHAR arquivo[] = "C:\\testes.txt";
  
  CHAR buffer[TAM_BUFFER]; // buffer para o conteúdo do arquivo
  DWORD nIn; // bytes lidos
  
  // vamos abrir o arquivo para leitura.
  // se o arquivo não existir uma mensagem de erro é exibida.
  HANDLE hArquivo = CreateFile(arquivo, GENERIC_READ, FILE_SHARE_READ, NULL,
    OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
  if(hArquivo == INVALID_HANDLE_VALUE){
    cout << "Erro ao abrir o arquivo: " << GetLastError() << endl;    
  }
  else{
    // arquivo aberto com sucesso. Vamos ler
    while(ReadFile(hArquivo, buffer, TAM_BUFFER, &nIn, NULL) && nIn > 0){
      cout << "Efetuei a leitura de " << nIn << " bytes." << endl;             
      // vamos adicionar o caractere de final de linha
      // caso os bytes lidos não preencham todo o buffer
      buffer[nIn] = 0;
      cout << "Conteudo da leitura: " << buffer << endl;
    }   
  }
    
  // vamos fechar o handle
  CloseHandle(hArquivo);
  
  system("PAUSE");
  return EXIT_SUCCESS;
}



Ruby ::: Dicas & Truques ::: Data e Hora

Como retornar a data e hora atual em Ruby usando os métodos new e now da classe Time

Quantidade de visualizações: 9801 vezes
Quando precisamos obter a data e hora atual, o Ruby nos fornece dois métodos muito úteis e presentes na classe Time: new e now. Ambos retornam um objeto da classe Time representando a data e hora atual no sistema no qual o programa Ruby está sendo executado.

Veja uma demonstração destes métodos no trecho de código a seguir:

# obtém a data e hora atual usando o método new
agora = Time.new

# exibe o resultado
puts "Usando new: " + agora.strftime("%d/%m/%Y - %H:%M:%S")

# obtém a data e hora atual usando o método now
agora = Time.now

# exibe o resultado
puts "Usando now: " + agora.strftime("%d/%m/%Y - %H:%M:%S")

Ao executar este código Ruby nós teremos o seguinte resultado:

Usando new: 21/03/2021 - 17:00:09
Usando now: 21/03/2021 - 17:00:09


C# ::: Coleções (Collections) ::: List<T>

Como usar a classe genérica List<T> do C# em suas aplicações

Quantidade de visualizações: 15934 vezes
A classe genérica List<T> da linguagem C# representa uma lista fortemente tipada de objetos que podem ser acessados por índices. Esta classe fornece métodos para pesquisar, ordenar e manipular seus elementos. Veja sua posição na hierarquia de classes da plataforma .NET:

System.Object
  System.Collections.Generic.List<T>
    System.ServiceModel.Install.Configuration.
  ServiceModelConfigurationSectionCollection
    System.ServiceModel.Install.Configuration.
  ServiceModelConfigurationSectionGroupCollection
    System.Workflow.ComponentModel.ActivityCollection
    System.Workflow.Activities.WorkflowRoleCollection
    System.Workflow.Activities.OperationParameterInfoCollection
    System.Workflow.ComponentModel.Design.
  ActivityDesignerGlyphCollection
    System.Workflow.Runtime.Tracking.ExtractCollection
    System.Workflow.Runtime.Tracking.TrackingAnnotationCollection
    System.Workflow.Runtime.Tracking.TrackingConditionCollection
    System.Workflow.Runtime.Tracking.ActivityTrackingLocationCollection
    System.Workflow.Runtime.Tracking.UserTrackingLocationCollection
    System.Workflow.Runtime.Tracking.ActivityTrackPointCollection
    System.Workflow.Runtime.Tracking.UserTrackPointCollection
    System.Workflow.Runtime.Tracking.WorkflowTrackPointCollection

Esta classe implementa também as interfaces IList<T>, ICollection<T>, IEnumerable<T>, IList, ICollection e IEnumerable.

A classe List<T> é a equivalente genérica da classe ArrayList. Ela implementa a interface genérica IList<T> usando um array (matriz) cujo tamanho é dinamicamente aumentado de acordo com a necessidade. Esta classe usa tanto um comparador de igualdade quanto um de ordenação.

Os métodos tais como Contains(), IndexOf(), LastIndexOf() e Remove() usam um comparador de igualdade para os elementos da lista. O comparador de igualdade padrão para o tipo T é definido segundo as seguintes regras: Se o tipo T implementar a interface genérica IEquatable<T>, então o comparador de igualdade é o método Equals(T) dessa interface. Caso contrário, o comparador de igualdade padrão é Object.Equals(Object).

Os métodos tais como BinarySearch() e Sort() usam um comparador de ordenação para os elementos da lista. O comparador padrão para o tipo T é definido da seguinte forma: Se o tipo T implementar a interface genérica IComparable<T>, então o comparador padrão é o método CompareTo(T) dessa interface. Caso contrário, se o tipo T implementar a interface não-genérica IComparable, então o comparador padrão é o método CompareTo(Object) dessa interface. Se o tipo T não implementar nenhuma destas duas interfaces, então não haverá comparador padrão, e um comparador ou delegate de comparação deve ser fornecido explicitamente.

Uma lista List<T> não fornece garantias quanto à sua ordenação. Devemos ordená-la por conta própria antes de efetuar algumas operações (tais como BinarySearch) que exigem que a List<T> esteja ordenada. Os elementos em uma coleção do tipo List<T> podem ser acessados usando índices (que começam a partir de 0). Uma List<T> aceita o valor null como valor válido para tipos referência e aceita elementos duplicados.

Em relação à performance, a documentação do .NET afirma que, embora List<T> e ArrayList possuam funcionalidade semelhante, a classe List<T> possui uma performance melhor na maioria dos casos, além de ser type safe (oferece segurança de tipos).

Veja um trecho de código no qual criamos uma List<T> de inteiros, inserimos alguns valores e usamos o laço foreach para percorrer a lista e exibir os valores dos elementos:

static void Main(string[] args){
  // vamos criar um objeto da classe List<T>
  List<int> valores = new List<int>();

  // vamos inserir três valores na lista
  valores.Add(5);
  valores.Add(2);
  valores.Add(9);

  // vamos usar o laço foreach para percorrer os elementos
  // na lista
  foreach(int v in valores){
    Console.WriteLine(v);    
  }

  // vamos pausar a execução
  Console.ReadKey();
}



Desafios, Exercícios e Algoritmos Resolvidos de C#

Veja mais Dicas e truques de C#

Dicas e truques de outras linguagens

E-Books em PDF

E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby


E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser. Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 19,90


© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 36 usuários muito felizes estudando em nosso site.