![]() |
|
||||
|
|||||
Você está aqui: Cards de Engenharia Civil - Construção Civil |
||
|
||
|
|
||
C# ::: Windows Forms ::: TextBox |
C# Windows Forms Avançado - Como rolar as linhas de um TextBox para cima uma de cada vez usando a API do WindowsQuantidade de visualizações: 7814 vezes |
|
Em algumas situações gostaríamos de rolar para cima o conteúdo de um TextBox de múltiplas linhas uma linha de cada vez. Para isso podemos usar a API do Windows, mais especificamente a mensagem WM_VSCROLL com o valor SB_LINEUP para seu parâmetro wParam. O valor do parâmetro lParam é zero. Veja um trecho de código que rola para cima o conteúdo de um TextBox uma linha de cada vez. Antes de executar este exemplo, tenha a certeza de ter um TextBox de múltiplas, com barras de rolagem e conteúdo que force o aparecimento das barras de rolagem. Comece adicionando a linha: using System.Runtime.InteropServices; na seção de usings do seu formulário ou classe. Em seguida adicione o trecho de código abaixo no corpo da classe, como um método:
[DllImport("user32.dll", EntryPoint = "SendMessage",
CharSet = CharSet.Auto, SetLastError = true)]
private static extern IntPtr SendMessage(IntPtr hWnd, uint Msg,
IntPtr wParam, IntPtr lParam);
Finalmente coloque o código abaixo no evento Click de um botão:
private void button2_Click(object sender, EventArgs e){
// antes de executar este exemplo certifique-se de que
// a propriedade Multiline do TextBox esteja definida
// como true e a propriedade ScrollBars contenha o valor
// Vertical ou Both
textBox1.Multiline = true;
textBox1.ScrollBars = ScrollBars.Vertical;
// constante para a mensagem WM_VSCROLL
const uint WM_VSCROLL = 0x115;
// constante para o parâmetro wParam
const int SB_LINEUP = 0;
// handle para a caixa de texto
IntPtr handle = textBox1.Handle;
IntPtr wParam = (IntPtr)SB_LINEUP;
IntPtr lParam = IntPtr.Zero;
// vamos fazer com que o TextBox role uma linha para cima
SendMessage(textBox1.Handle, WM_VSCROLL, wParam, lParam);
}
|
Python ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas |
Como calcular o seno de um número ou ângulo em Python usando a função sin() do módulo MathQuantidade de visualizações: 1882 vezes |
|
Em geral, quando falamos de seno, estamos falando do triângulo retângulo de Pitágoras (Teorema de Pitágoras). A verdade é que podemos usar a função seno disponível nas linguagens de programação para calcular o seno de qualquer número, mesmo nossas aplicações não tendo nenhuma relação com trigonometria. No entanto, é sempre importante entender o que é a função seno. Veja a seguinte imagem: ![]() Veja que temos um triângulo retângulo com as medidas já calculadas para a hipotenusa e os dois catetos, assim como os ângulos entre eles. Assim, o seno é a razão entre o cateto oposto (oposto ao ângulo theta) e a hipotenusa, ou seja, o cateto oposto dividido pela hipotenusa. Veja a fórmula: \[\text{Seno} = \frac{\text{Cateto oposto}}{\text{Hipotenusa}} \] Então, se dividirmos 20 por 36.056 (na figura eu arredondei) nós teremos 0.5547, que é a razão entre o cateto oposto e a hipotenusa (em radianos). Agora, experimente calcular o arco-cosseno de 0.5547. O resultado será 0.9828 (em radianos). Convertendo 0.9828 radianos para graus, nós obtemos 56.31º, que é exatamente o ângulo em graus entre o cateto oposto e a hipotenusa na figura acima. Pronto! Agora que já sabemos o que é seno na trigonometria, vamos entender mais sobre a função sin() da linguagem Python. Este método, que faz parte do módulo Math, recebe um valor numérico e retorna um valor, também numérico) entre -1 até 1 (ambos inclusos). Veja:
# importamos a biblioteca Math
import math as math
def main():
print("Seno de 0 = ", math.sin(0))
print("Seno de 1 = ", math.sin(1))
print("Seno de 2 = ", math.sin(2))
if __name__== "__main__":
main()
Ao executar este código Python nós teremos o seguinte resultado: Seno de 0 = 0.0 Seno de 1 = 0.8414709848078965 Seno de 2 = 0.9092974268256817 Note que calculamos os senos dos valores 0, 1 e 2. Observe como os resultados conferem com a curva da função seno mostrada abaixo: ![]() |
Java ::: Desafios e Lista de Exercícios Resolvidos ::: Métodos, Procedimentos e Funções |
Exercício Resolvido de Java - Como converter minutos em segundos em Java usando uma funçãoQuantidade de visualizações: 1073 vezes |
|
Pergunta/Tarefa: Escreva um programa Java para converter minutos em segundos. Você deverá criar uma função converter() que receberá, como argumento, um número inteiro representando os minutos e retornará, também como um inteiro, os segundos correspondentes. Os minutos deverão ser informados pelo usuário. Sua saída deverá ser parecida com: Informe os minutos: 15 A quantidade de segundos é: 900 Veja a resolução comentada deste exercício em Java:
package estudos;
import java.util.Scanner;
public class Estudos {
public static void main(String[] args) {
// para ler a entrada do usuário
Scanner entrada = new Scanner(System.in);
// vamos pedir para o usuário informar os minutos
System.out.print("Informe os minutos: ");
int minutos = Integer.parseInt(entrada.nextLine());
// agora vamos chamar a função converter() para converter
// os minutos em segundos
int segundos = converter(minutos);
// e mostramos o resultado
System.out.println("A quantidade de segundos é: " + segundos);
}
// função usada para converter minutos em segundos
public static int converter(int minutos){
int segundos = minutos * 60;
return segundos;
}
}
|
Dart ::: Dicas & Truques ::: Trigonometria - Funções Trigonométricas |
Como calcular o cosseno de um ângulo em Dart usando o método cos() da biblioteca Math - Calculadora de cosseno em DartQuantidade de visualizações: 1065 vezes |
|
Em geral, quando falamos de cosseno, estamos falando do triângulo retângulo de Pitágoras (Teorema de Pitágoras). A verdade é que podemos usar a função cosseno disponível nas linguagens de programação para calcular o cosseno de qualquer número, mesmo nossas aplicações não tendo nenhuma relação com trigonometria. No entanto, é sempre importante entender o que é a função cosseno. Veja a seguinte imagem: ![]() Veja que temos um triângulo retângulo com as medidas já calculadas para a hipotenusa e os dois catetos, assim como os ângulos entre eles. Assim, o cosseno é a razão entre o cateto adjascente e a hipotenusa, ou seja, o cateto adjascente dividido pela hipotenusa. Veja a fórmula: \[\text{Cosseno} = \frac{\text{Cateto adjascente}}{\text{Hipotenusa}} \] Então, se dividirmos 30 por 36.056 (na figura eu arredondei) nós teremos 0.8320, que é a razão entre o cateto adjascente e a hipotenusa (em radianos). Agora, experimente calcular o arco-cosseno de 0.8320. O resultado será 0.5881 (em radianos). Convertendo 0.5881 radianos para graus, nós obtemos 33.69º, que é exatamente o ângulo em graus entre o cateto adjascente e a hipotenusa na figura acima. Pronto! Agora que já sabemos o que é cosseno na trigonometria, vamos entender mais sobre a função cos() da linguagem Dart. Esta método, que faz parte da biblioteca Math, recebe um valor numérico e retorna um valor, também numérico) entre -1 até 1 (ambos inclusos). Veja:
// vamos importar a biblioteca dart:math
import "dart:math";
void main(){
print("Cosseno de 0 = " + cos(0).toString());
print("Cosseno de 1 = " + cos(1).toString());
print("Cosseno de 2 = " + cos(2).toString());
}
Ao executar este código Dart nós teremos o seguinte resultado: Cosseno de 0 = 1.0 Cosseno de 1 = 0.5403023058681398 Cosseno de 2 = -0.4161468365471424 Note que calculamos os cossenos dos valores 0, 1 e 2. Observe como os resultados conferem com a curva da função cosseno mostrada abaixo: ![]() |
Java ::: Dicas & Truques ::: Programação Orientada a Objetos |
Como criar e usar métodos estáticos em suas classes Java - Programação Orientada a Objetos em Java - Java OOPQuantidade de visualizações: 13835 vezes |
Como já vimos em outras dicas desta seção, uma classe Java possui propriedades (variáveis) e métodos (funções). Veja a seguinte declaração de uma classe Produto:
package estudos;
// declaração da classe Produto
public class Produto {
private String nome;
private double preco;
public String getNome() {
return nome;
}
public void setNome(String nome) {
this.nome = nome;
}
public double getPreco() {
return preco;
}
public void setPreco(double preco) {
this.preco = preco;
}
}
Aqui cada instância da classe Produto terá suas próprias variáveis nome e preco e os métodos que permitem acesso e alteração destas variáveis também estão disponíveis a cada instância. Há, porém, situações nas quais gostaríamos que um determinado método estivesse atrelado à classe e não à cada instância individual. Desta forma, é possível chamar um método de uma classe sem a necessidade da criação de instâncias da mesma. O método main() presente em todas as aplicações Java é um bom exemplo deste tipo de método. Métodos estáticos em Java podem ser criados por meio do uso da palavra-chave static. É comum tais métodos serem declarados com o modificador public, o que os torna acessíveis fora da classe na qual estes foram declarados. Veja um exemplo: Código para Pessoa.java:
package estudos;
// classe Pessoa com duas variáveis privadas e
// um método estático
public class Pessoa {
private String nome;
private int idade;
// um método estático que permite verificar a validade
// de um número de CPF
public static boolean isCPFValido(String cpf){
// alguns cálculos aqui
return true;
}
}
Veja agora como podemos chamar o método isCPFValido() sem a necessidade da criação de uma nova instância da classe Pessoa: Código para Main.java:
package estudos;
public class Main {
public static void main(String[] args) {
// vamos efetuar uma chamada ao método isCPFValido() sem
// criar uma instância da classe Pessoa
if(Pessoa.isCPFValido("12345")){
System.out.println("CPF Válido");
}
else{
System.out.println("CPF Inválido");
}
}
}
Note que o método estático isCPFValido() da classe Pessoa foi declarado assim: public static boolean isCPFValido(String cpf); Desta forma, podemos chamá-lo a partir de código externo à classe sem a necessidade de criar uma nova instância da mesma. Veja: if(Pessoa.isCPFValido("12345")){} É importante notar que métodos estáticos não possuem acesso a variáveis e métodos não estáticos da classe, tampouco ao ponteiro this (que só existe quando criamos instâncias da classe). Assim, o trecho de código abaixo:
// um método estático que permite verificar a validade
// de um número de CPF
public static boolean isCPFValido(String cpf){
// alguns cálculos aqui
// vamos acessar a variável não estática nome
nome = "Osmar J. Silva";
return true;
}
vai gerar o seguinte erro de compilação: Uncompilable source code - non-static variable nome cannot be referenced from a static context. Se usarmos this.nome a mensagem de erro de compilação será: Uncompilable source code - non-static variable this cannot be referenced from a static context. Métodos estáticos são úteis quando precisamos criar classes que atuarão como suporte, nas quais poderemos chamar funções (métodos) auxiliares sem a necessidade de criar novas instâncias a cada vez que estas funções forem necessárias. |
Desafios, Exercícios e Algoritmos Resolvidos de Java |
Veja mais Dicas e truques de Java |
Dicas e truques de outras linguagens |
E-Books em PDF |
||||
|
||||
|
||||
Linguagens Mais Populares |
||||
|
1º lugar: Java |







