Java, C/C++, Python, C#, LISP, AutoLisp, AutoCAD e VBA
PHP, Python, C#, JavaScript, Laravel, Google Ads e SEO

Você está aqui: Cards de AutoCAD Civil 3D
Card 1 de 30
Cogo Points no AutoCAD Civil 3D



No AutoCAD Civil 3D, "Cogo Points" (ou pontos COGO) são pontos de controle ou referência que você pode usar para definir localizações específicas em um projeto de engenharia civil. Esses pontos podem representar diversas coisas, como marcos topográficos, elementos de infraestrutura ou pontos de interesse em um terreno.

1. Cogo points são exibidos apenas na aba Prospector.

2. Cogo points possuem um ícone que se parece com um círculo combinado com um alvo.

3. Cogo points podem ser movidos, até mesmo usando comandos de desenho básicos não específicos do Civil 3D.

4. Cogo points podem ser editados na janela Properties.

Filtrar Cards
Use esta opção para filtrar os cards pelos tópicos que mais lhe interessam.
Termos:
Aviso Importante: Nos esforçamos muito para que o conteúdo dos cards e dos testes e conhecimento seja o mais correto possível. No entanto, entendemos que erros podem ocorrer. Caso isso aconteça, pedimos desculpas e estamos à disposição para as devidas correções. Além disso, o conteúdo aqui apresentado é fruto de conhecimento nosso e de pesquisas na internet e livros. Caso você encontre algum conteúdo que não deveria estar aqui, por favor, nos comunique pelos e-mails exibidos nas opções de contato.
Link para compartilhar na Internet ou com seus amigos:

Java ::: Dicas & Truques ::: Ordenação e Pesquisa (Busca)

Como implementar a ordenação Quicksort em Java - Apostila de Java para iniciantes

Quantidade de visualizações: 562 vezes
A ordenação Quicksort é um dos algorítmos de ordenação mais encontrados em aplicações reais de programação. No Delphi esta ordenação é encontrada no objeto TList. No Java podemos encontrá-lo no método Arrays.sort(). Na linguagem C a ordenação Quicksort é implementada na função qsort() da biblioteca padrão.

O algoritmo de ordenação Quicksort é do tipo dividir para conquistar (divide-and-conquer principle). Neste tipo de algoritmo o problema é dividido em sub-problemas e a solução é concatenada quando as chamadas recursivas atingirem o caso base.

O vetor (ou array) a ser ordenado é dividido em duas sub-listas por um elemento chamado pivô, resultando em uma lista com elementos menores que o pivô e outra lista com os elementos maiores que o pivô. Esse processo é repetido para cada chamada recursiva. Sim, a ordenação Quicksort faz uso extensivo de recursividade, razão pela qual devemos ter muito cuidado para não estourar a pilha do sistema.

Existem muitos estudos sobre o pivô ideal para a ordenação Quicksort. Nessa dica adotarei o último elemento do array ou sub-array como pivô. Em vetores não ordenados essa estratégia, em geral, resulta em uma boa escolha.

Vamos ao código Java então? Veja um programa Java completo demonstrando o uso da ordenação Quicksort para um array de 10 elementos inteiros:

package estudos;

import java.util.Scanner;

public class Estudos {
  public static void main(String[] args) {
    // vamos declarar um array de 10 elementos
    int valores[] = new int[10];
    
    // para ler a entrada do usuário
    Scanner entrada = new Scanner(System.in);
    
    // vamos pedir ao usuário para informar os valores para o vetor
    for(int i = 0; i < valores.length; i++){
      System.out.print("Informe o valor do elemento " + i + ": ");
      valores[i] = Integer.parseInt(entrada.nextLine()); 
    }

    // vamos mostrar o array informado
    System.out.println("\nO array informado foi:\n");
    for(int i = 0; i < valores.length; i++){
      System.out.print(valores[i] + "  ");
    }
    
    // vamos ordenar o vetor usando a ordenação Quicksort
    quickSort(valores, 0, valores.length - 1);
    
    System.out.println("\n\nO array ordenado é:\n");
    for(int i = 0; i < valores.length; i++){
      System.out.print(valores[i] + "  ");
    }
    
    System.out.println("\n\n");
  }

  // função de implementação da ordenação Quicksort
  public static void quickSort(int vetor[], int inicio, int fim) {
    // o início é menor que o fim?
    if (inicio < fim) {
      // vamos obter o novo índice da partição
      int indiceParticao = particionar(vetor, inicio, fim);

      // efetuamos novas chamadas recursivas
      quickSort(vetor, inicio, indiceParticao - 1);
      quickSort(vetor, indiceParticao + 1, fim);
    }
  }
  
  // função que retorna o índice de partição
  private static int particionar(int vetor[], int inicio, int fim) {
    // para guardar o pivô
    int pivot = vetor[fim];
    int i = (inicio - 1);
 
    for (int j = inicio; j < fim; j++) {
      if (vetor[j] <= pivot) {
        i++;

        // fazemos a troca
        int temp = vetor[i];
        vetor[i] = vetor[j];
        vetor[j] = temp;
      }
    }

    // efetua a troca
    int temp = vetor[i + 1];
    vetor[i + 1] = vetor[fim];
    vetor[fim] = temp;

    return i + 1;
  }
}

Ao executar este código Java nós teremos o seguinte resultado:

Informe o valor do elemento 0: 7
Informe o valor do elemento 1: 2
Informe o valor do elemento 2: 43
Informe o valor do elemento 3: 1
Informe o valor do elemento 4: 9
Informe o valor do elemento 5: 6
Informe o valor do elemento 6: 22
Informe o valor do elemento 7: 3
Informe o valor do elemento 8: 37
Informe o valor do elemento 9: 5

O array informado foi:

7 2 43 1 9 6 22 3 37 5

O array ordenado é:

1 2 3 5 6 7 9 22 37 43


Firebird ::: Dicas & Truques ::: Strings e Caracteres

Como converter o valor de um campo do tipo CHAR ou VARCHAR em letras minúsculas usando a função LOWER() do Firebird

Quantidade de visualizações: 8734 vezes
A função LOWER() do Firebird é usada quando precisamos converter o valor de um campo do tipo CHAR ou VARCHAR em letras minúsculas. A partir do Firebird 2 esta função consegue transformar em minúsculas até mesmo os caracteres não pertencentes ao conjunto ASCII (non-ASCII), mesmo se o collation padrão (binary) estiver sendo usado.

Veja um exemplo de como usar esta função em uma query SQL DML SELECT FROM:

SELECT NOME NORMAL, LOWER(NOME) MINUSCULAS FROM CLIENTES WHERE ID = 1;

Ao executarmos esta query teremos o seguinte resultado:

NORMAL	          MINUSCULAS
OSMAR J. SILVA	  osmar j. silva


A função LOWER() pode ser usada em DSQL (Dynamic SQL), ESQL (Embedded SQL) e PSQL (Stored procedure and trigger language).


Java ::: Dicas & Truques ::: Data e Hora

Java para iniciantes - Como usar a classe Date em suas aplicações Java

Quantidade de visualizações: 14403 vezes
A classe Date pertence ao pacote java.util, e, embora muitos de seus métodos estejam em desuso (Deprecated), ainda encontraremos muito código Java que usa esta classe para trabalhar com datas e horas. Veja sua posição na hierarquia de classes Java:

java.lang.Object
  java.util.Date

Esta classe implementa as interfaces Serializable, Cloneable e Comparable<Date> e suas subclasses conhecidas são Date, Time, Timestamp (todas do pacote java.sql). As informações abaixo podem ser encontradas na documentação da classe Date.

A classe Date representa um momento específico no tempo, com uma precisão de milisegundos.

Antes do JDK 1.1, esta classe tinha duas funções adicionais. Ela permitia a interpretação de datas como valores de ano, mês, dia, hora, minuto e segundo. Também permitia a formatação e parsing de strings de datas. Infelizmente, a API para estas funções não facilitava a internacionalização. Assim, a partir do JDK 1.1, a classe Calendar deve ser usada para converter entre campos de datas e horas e a classe DateFormat deve ser usada para formatar e fazer o parsing de strings de datas. Os métodos correspondentes a estas funções estão em desuso (Deprecated) na classe Date.

Embora a classe Date tenha sido projetada para refletir a hora universal coordenada (Coordinated Universal Time - UTC), ela pode não ser capaz de fazer isso corretamente, dependendo do sistema no qual a Java Virtual Machine esteja sendo executada. A grande maioria dos sistemas operacionais modernos assume que 1 dia = 24 × 60 × 60 = 86400 segundos em todos os casos. No UTC, contudo, de dois em dois anos, aproximadamente, há um segundo extra, chamado de "leap second" (a mesma idéia do ano bissexto). O leap second é sempre adicionado como o último segundo do dia e sempre nos dias 31 de dezembro ou 30 de junho. Por exemplo, o último minuto do ano de 1995 teve 61 segundos, graças ao segundo extra que foi adicionado. A maioria dos relógios dos computadores não são precisos o suficiente para refletir a distinção do leap second.

Alguns padrões de computadores são definidos em termos da hora de Greenwich (Greenwich mean time - GMT), que é o equivalente ao Universal Time (UT). GMT é o nome "civil" para o padrão, UT é o nome "científico" para o mesmo padrão. A distinção entre UTC e UT é que UTC é baseado em um relógio atômico e UT é baseado em observações astronômicas, o que para todos os propósitos práticos não traz diferença significativa. Devido à rotação da terra não ser uniforme (ela desacelera ou acelera de formas complicadas), O UT nem sempre flui uniformente. Segundos extras (Leap seconds) são inseridos conforme necessário no UTC de forma a mantê-lo dentro dos 0.9 segundos do UT1, que é uma versão do UT com algumas correções aplicadas. Há outros sistemas de datas e horas também; por exemplo, a escala de tempo pelo sistema de posicionamento global baseado em satélite (satellite-based global positioning system - GPS) é sincronizado com o UTC mas não é ajustado para os segundos extras.

Em todos os métodos da classe Date que aceitam ou retornam valores de ano, mês, dia, hora, minuto e segundos, as seguintes representações são usadas:


  • Um ano y é representado pelo inteiro y - 1900.

  • Um mês é representado por um inteiro na faixa de 0 a 11. 0 é janeiro, 1 é fevereiro e assim por diante; assim, 11 é dezembro.

  • Um dia (dia do mês) é representado por um inteiro na faixa de 1 a 31, como estamos acostumados.

  • Uma hora é representada por um inteiro na faixa de 0 a 23. Assim, a hora da meia-noite até 1 a.m. é a hora 0 e a hora do meio-dia até 1 p.m. é a hora 12.

  • Um minuto é representado por um inteiro na faixa de 0 a 59, como estamos acostumados.

  • Um segundo é representado por um inteiro na faixa de 0 a 61; os valores 60 e 61 ocorrem somente para os segundos extras (leap seconds) e somente nas implementações Java que realmente lidam com estes segundos corretamente. Devido à forma na qual leap seconds são apresentados atualmente, é pouco provável que dois leap seconds ocorrerão no mesmo minuto, mas esta especificação segue as convenções de datas e horas do ISO C.

  • Em todos os casos, argumentos fornecidos a estes métodos não precisam necessariamente estar nas faixas indicadas; por exemplo, uma data pode ser definida como 32 de janeiro e ser interpretada como 1º de fevereiro.




C++ ::: Desafios e Lista de Exercícios Resolvidos ::: STL Vector C++

Exercícios Resolvidos de C++ - Escreva um programa C++ que retorna os elementos em um vector que são estritamente menores que seus vizinhos adjacentes da esquerda e da direita

Quantidade de visualizações: 408 vezes
Pergunta/Tarefa:

Escreva um programa C++ que retorna os elementos em um vector que são estritamente menores que seus vizinhos adjacentes da esquerda e da direita. Seu código deverá pedir para o usuário informar 10 valores inteiros, guardá-los em um vector e então calcular e exibir o resultado.

Sua saída deverá ser parecida com:

Informe o 1.o valor: 8
Informe o 2.o valor: 4
Informe o 3.o valor: 9
Informe o 4.o valor: 3
Informe o 5.o valor: 1
Informe o 6.o valor: 6
Informe o 7.o valor: 2
Informe o 8.o valor: 7
Informe o 9.o valor: 3
Informe o 10.o valor: 8

Conteúdo do vector: 8  4  9  3  1  6  2  7  3  8

Os elementos menores que seus vizinhos adjascentes são:

4  1  2  3
Resposta/Solução:

Veja a resolução comentada deste exercício usando C++:

// vamos fazer os includes ncessários
#include <algorithm>
#include <iostream>
#include <vector>

using namespace std;

// função para encontrar os elementos no vector que são menores
// que seus vizinhos adjacentes
vector<int> verificar(vector<int> valores) {
  // vamos inicializar um vector vazio para guardar os elementos
  // que passarem na condição
  vector<int> temp;
    
  // vamos percorrer o vector recebido como argumento
  for(int i = 1; i < valores.size() - 1; i++) {
    // o elemento atual é menor que o elemento anterior e posterior a ele?
    if(valores[i] < valores[i - 1] && valores[i] < valores[i + 1]) {
      // vamos adicionar no vector temporário
      temp.push_back(valores[i]);
    }
  }
    
  // retornamos o vector temporário
  return temp;
}
 
// função principal do programa
int main(int argc, char *argv[]) {
  // vamos criar o vector que guardará os valores informados
  // pelo usuário
  vector<int> numeros;
  int valor;

  // vamos ler 10 números inteiros
  for (int i = 0; i < 10; i++) {
    cout << "Informe o " << (i + 1) << ".o valor: ";
    cin >> valor;
    numeros.push_back(valor);
  }

  // vamos mostrar o conteúdo do vector original
  cout << "\nConteúdo do vector: ";
  for (int n: numeros) {
    cout << n << "  ";
  }
 
  // agora vamos testar os números que são menores que seus
  // vizinhos adjascentes
  vector<int> resultado = verificar(numeros);
  cout << "\n\nOs elementos menores que seus vizinhos adjascentes são:\n\n";   
  for (int n: resultado) {
    cout << n << "  ";
  }
 
  cout << "\n\n";
  return EXIT_SUCCESS;
}



Python ::: Pillow Python Imaging Library ::: Image

Como abrir uma imagem no Pillow do Python usando a função open() do objeto Image

Quantidade de visualizações: 1775 vezes
A função open() do objeto Image da biblioteca Pilow do Python é muito útil quando queremos abrir uma imagem para fins de edição ou exibição. Em sua forma mais simples este método exige apenas o caminho e nome da imagem e retorna um objeto PIL Image.

Veja um trecho de código no qual usamos a função open() para abrir a imagem e, em seguida, usamos a função show() para exibir a imagem no visualizador de imagens padrão definido em nossa máquina:

# vamos importar a biblioteca Pilow
from PIL import Image

# método principal
def main():
  # vamos abrir uma imagem
  imagem = Image.open("Mulher.png")

  # vamos exibir a imagem no visualizador padrão
  imagem.show("Foto a partir do Pilow")

if __name__== "__main__":
  main()

Note que o método show() do objeto Image é usado, na maioria das vezes, com o propósito de depuração de nossos códigos, já que ele cria um arquivo temporário e o envia ao visualizador padrão. Dessa forma nós podemos editar a imagem na memória e enviar para o visualizador todas as vezes que quisermos ver algum resultado.


Desafios, Exercícios e Algoritmos Resolvidos de Python

Veja mais Dicas e truques de Python

Dicas e truques de outras linguagens

E-Books em PDF

E-Book 650 Dicas, Truques e Exercícios Resolvidos de Python - PDF com 1.200 páginas
Domine lógica de programação e a linguagem Python com o nosso E-Book 650 Dicas, Truques e Exercícios Exercícios de Python, para você estudar onde e quando quiser.

Este e-book contém dicas, truques e exercícios resolvidos abrangendo os tópicos: Python básico, matemática e estatística, banco de dados, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book
E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser.

Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book

Linguagens Mais Populares

1º lugar: Java
2º lugar: Python
3º lugar: C#
4º lugar: PHP
5º lugar: C
6º lugar: Delphi
7º lugar: JavaScript
8º lugar: C++
9º lugar: VB.NET
10º lugar: Ruby


E-Book 350 Exercícios Resolvidos de Java - PDF com 500 páginas
Domine lógica de programação e a linguagem Java com o nosso E-Book 350 Exercícios Exercícios de Java, para você estudar onde e quando quiser. Este e-book contém exercícios resolvidos abrangendo os tópicos: Java básico, matemática e estatística, programação dinâmica, strings e caracteres, entrada e saída, estruturas condicionais, vetores e matrizes, funções, laços, recursividade, internet, arquivos e diretórios, programação orientada a objetos e muito mais.
Ver Conteúdo do E-book Apenas R$ 19,90


© 2025 Arquivo de Códigos - Todos os direitos reservados
Neste momento há 131 usuários muito felizes estudando em nosso site.