Você está aqui: TypeScript ::: Dicas & Truques ::: Geometria, Trigonometria e Figuras Geométricas

Como calcular o coeficiente angular de uma reta dados dois pontos no plano cartesiano usando TypeScript

Quantidade de visualizações: 39 vezes
O Coeficiente Angular de uma reta é a variação, na vertical, ou seja, no eixo y, pela variação horizontal, no eixo x. Sim, isso mesmo. O coeficiente angular de uma reta tem tudo a ver com a derivada, que nada mais é que a taxa de variação de y em relação a x.

Vamos começar analisando o seguinte gráfico, no qual temos dois pontos distintos no plano cartesiano:



Veja que o segmento de reta AB passa pelos pontos A (x=3, y=6) e B (x=9, y=10). Dessa forma, a fórmula para obtenção do coeficiente angular m dessa reta é:

\[\ \text{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tg \theta \]

Note que __$\Delta y__$ e __$\Delta x__$ são as variações dos valores no eixo das abscissas e no eixo das ordenadas. No triângulo retângulo que desenhei acima, a variação __$\Delta y__$ se refere ao comprimento do cateto oposto e a variação __$\Delta y__$ se refere ao comprimento do cateto adjascente.

Veja agora o trecho de código na linguagem TypeScript que solicita as coordenadas x e y dos dois pontos, efetua o cálculo e mostra o coeficiente angular m da reta que passa pelos dois pontos:

// x e y do primeiro ponto
var x1:number = 3;
var y1:number = 6;
  
// x e y do segundo ponto
var x2:number = 9;
var y2:number = 10;   
   
var m:number = (y2 - y1) / (x2 - x1);
   
// mostramos o resultado
console.log("O coeficiente angular é: " + m);

Ao executar este código TypeScript nós teremos o seguinte resultado:

O coeficiente angular é: 0.6666666666666666

Veja agora como podemos calcular o coeficiente angular da reta que passa pelos dois pontos usando o Teorema de Pitágoras. Note que agora nós estamos tirando proveito da tangente do ângulo Theta (__$\theta__$), também chamado de ângulo Alfa ou Alpha (__$\alpha__$):

// x e y do primeiro ponto
var x1:number = 3;
var y1:number = 6;
  
// x e y do segundo ponto
var x2:number = 9;
var y2:number = 10;   
   
// vamos obter o comprimento do cateto oposto
var cateto_oposto:number = y2 - y1;
// e agora o cateto adjascente
var cateto_adjascente:number = x2 - x1;
// vamos obter o ângulo tetha, ou seja, a inclinação da hipotenusa
// (em radianos, não se esqueça)
var tetha:number = Math.atan2(cateto_oposto, cateto_adjascente);
// e finalmente usamos a tangente desse ângulo para calcular
// o coeficiente angular
var tangente:number = Math.tan(tetha);
   
// mostramos o resultado
console.log("O coeficiente angular é: " + tangente);

Ao executar este código você verá que o resultado é o mesmo. No entanto, fique atento às propriedades do coeficiente angular da reta:

1) O coeficiente angular é positivo quando a reta for crescente, ou seja, m > 0;

2) O coeficiente angular é negativo quando a reta for decrescente, ou seja, m < 0;

3) Se a reta estiver na horizontal, ou seja, paralela ao eixo x, seu coeficiente angular é zero (0).

4) Se a reta estiver na vertical, ou seja, paralela ao eixo y, o coeficiente angular não existe.

Veja mais Dicas e truques de TypeScript

Dicas e truques de outras linguagens

Quem Somos

Osmar J. Silva
WhatsApp +55 (062) 98553-6711

Goiânia-GO
Full Stack Developer, Professional Java Developer, PHP, C/C++, Python Programmer, wxWidgets Professional C++ Programmer, Freelance Programmer. Formado em Ciência da Computação pela UNIP (Universidade Paulista Campus Goiânia) e cursando Engenharia Elétrica pela PUC-Goiás. Possuo conhecimentos avançados de Java, Python, JavaScript, C, C++, PHP, C#, VB.NET, Delphi, Android, Perl, e várias tecnologias que envolvem o desenvolvimento web, desktop, front-end e back-end. Atuo há mais de 15 anos como programador freelancer, atendendo clientes no Brasil, Portugal, Argentina e vários outros paises.
Entre em contato comigo para, juntos, vermos em que posso contribuir para resolver ou agilizar o desenvolvimento de seus códigos.
José de Angelis
WhatsApp +55 (062) 98243-1195

Goiânia-GO
Formado em Sistemas de Informação pela Faculdade Delta, Pós graduado em Engenharia de Software (PUC MINAS), Pós graduado Marketing Digital (IGTI) com ênfase em Growth Hacking. Mais de 15 anos de experiência em programação Web. Marketing Digital focado em desempenho, desenvolvimento de estratégia competitiva, analise de concorrência, SEO, webvitals, e Adwords, Métricas de retorno. Especialista Google Certificado desde 2011 Possui domínio nas linguagens PHP, C#, JavaScript, MySQL e frameworks Laravel, jQuery, flutter. Atualmente aluno de mestrado em Ciência da Computação (UFG)
Não basta ter um site. É necessário ter um site que é localizado e converte usuários em clientes. Se sua página não faz isso, Fale comigo e vamos fazer uma analise e conseguir resultados mais satisfatórios..

Linguagens Mais Populares

1º lugar: Java
2º lugar: C#
3º lugar: PHP
4º lugar: Delphi
5º lugar: Python
6º lugar: JavaScript
7º lugar: C
8º lugar: C++
9º lugar: VB.NET
10º lugar: JSP (Java Server Pages)



© 2021 Arquivo de Códigos - Todos os direitos reservados | Versión en Español | Versão em Português